[edit: sorry, the formatting of links and italics in this is all screwy. I've tried editing both the rich-text and the HTML and either way it looks ok while i'm editing it but the formatted terms either come out with no surrounding spaces or two surrounding spaces]
In the latest Rationality Quotes thread, CronoDAS quoted Paul Graham:
It would not be a bad definition of math to call it the study of terms that have precise meanings.
"As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality."
-- Albert Einstein
As far as I can see, that's just an acknowledgement that we can't know anything for certain -- so we can't be certain of any 'laws', and any claim of certainty is invalid.
I was arguing that any applied maths term has two types of meanings -- one 'internal to' the equations and an 'external' ontological one, concerning what it represents -- and that a precise 'internal' meaning does not imply a precise 'external' meaning, even though 'precision' is often only thought of in terms of the first type of meaning.
I don't see how that relates in any way to the question of absolute certainty. Is there some relationship I'm missing here?