Illusions are cool. They make me think something is happening when it isn't. When offered the classic illusion pictured to the right, I wonder at the color of A and B. How weird, bizarre, and incredible.
Today I looked at the above illusion and thought, "Why do I keep thinking A and B are different colors? Obviously, something is wrong with how I am thinking about colors." I am being stupid when my I look at this illusion and I interpret the data in such a way to determine distinct colors. My expectations of reality and the information being transmitted and received are not lining up. If they were, the illusion wouldn't be an illusion.
The number 2 is prime; the number 6 is not. What about the number 1? Prime is defined as a natural number with exactly two divisors. 1 is an illusionary prime if you use a poor definition such as, "Prime is a number that is only divisible by itself and 1." Building on these bad assumptions could result in all sorts of weird results much like dividing by 0 can make it look like 2 = 1. What a tricky illusion!
An optical illusion is only bizarre if you are making a bad assumption about how your visual system is supposed to be working. It is a flaw in the Map, not the Territory. I should stop thinking that the visual system is reporting RGB style colors. It isn't. And, now that I know this, I am suddenly curious about what it is reporting. I have dropped a bad belief and am looking for a replacement. In this case, my visual system is distinguishing between something else entirely. Now that I have the right answer, this optical illusion should become as uninteresting as questioning whether 1 is prime. It should stop being weird, bizarre, and incredible. It merely highlights an obvious reality.
Addendum: This post was edited to fix a few problems and errors. If you are at all interested in more details behind the illusion presented here, there are a handful of excellent comments below.
A second comment...
You've certainly convinced me that '1' should not be included in the set of things that are used to uniquely factor numbers. However, how I can I know if this set is the set of "primes"?
I guess I was thinking that the essence of primes was about their irreducibility/atomic-ness. The number 5 would be considered prime because you can't describe it multiplicatively in any way except by using the number 5. Using my preferred notion, the number 0 and the number -1 would also be "prime" (as Mr Hen guessed). Is there a different word for this concept?
See wikipedia on natural generalizations of prime numbers. In particular note that most of the definitions say "units" instead of "1", like "Irreducible elements are ones which cannot be written as a product of two ring elements that are not units." which rules out 0 for the integers, +, x and includes the possibility of multiple units (-1 and 1).
I don't know offhand of any nice, commonly referenced property P(S,O) that is: A,x,y in a structure S with operation O: A is P just when if x O y = A then either x = A or y = A. Which... (read more)