Related to: Some of the discussion going on here
In the LW version of Pascal's Mugging, a mugger threatens to simulate and torture people unless you hand over your wallet. Here, the problem is decision-theoretic: as long as you precommit to ignore all threats of blackmail and only accept positive-sum trades, the problem disappears.
However, in Nick Bostrom's version of the problem, the mugger claims to have magic powers and will give Pascal an enormous reward the following day if Pascal gives his money to the mugger. Because the utility promised by the mugger so large, it outweighs Pascal's probability that he is telling the truth. From Bostrom's essay:
Pascal: Gee . . . OK, don’t take this personally, but my credence that you have these magic powers whereof you speak is about one in a quadrillion.
Mugger: Wow, you are pretty confident in your own ability to tell a liar from an honest man! But no matter. Let me also ask you, what’s your probability that I not only have magic powers but that I will also use them to deliver on any promise – however extravagantly generous it may seem – that I might make to you tonight?
Pascal: Well, if you really were an Operator from the Seventh Dimension as you assert, then I suppose it’s not such a stretch to suppose that you might also be right in this additional claim. So, I’d say one in 10 quadrillion.
Mugger: Good. Now we will do some maths. Let us say that the 10 livres that you have in your wallet are worth to you the equivalent of one happy day. Let’s call this quantity of good 1 Util. So I ask you to give up 1 Util. In return, I could promise to perform the magic tomorrow that will give you an extra 10 quadrillion happy days, i.e. 10 quadrillion Utils. Since you say there is a 1 in 10 quadrillion probability that I will fulfil my promise, this would be a fair deal. The expected Utility for you would be zero. But I feel generous this evening, and I will make you a better deal: If you hand me your wallet, I will perform magic that will give you an extra 1,000 quadrillion happy days of life.
Pascal: I admit I see no flaw in your mathematics.
As a result, says Bostrom, there is nothing from rationally preventing Pascal from taking the mugger's offer even though it seems intuitively unwise. Unlike the LW version, in this version the problem is epistemic and cannot be solved as easily.
Peter Baumann suggests that this isn't really a problem because Pascal's probability that the mugger is honest should scale with the amount of utility he is being promised. However, as we see in the excerpt above, this isn't always the case because the mugger is using the same mechanism to procure the utility, and our so our belief will be based on the probability that the mugger has access to this mechanism (in this case, magic), not the amount of utility he promises to give. As a result, I believe Baumann's solution to be false.
So, my question is this: is it possible to defuse Bostrom's formulation of Pascal's Mugging? That is, can we solve Pascal's Mugging as an epistemic problem?
Why wait for the mugger to make his stupendous offer? Maybe he's going to give you this stupendous blessing anyway -- can you put a sufficiently low probability on that? Don't you have to give all your money to the next person you meet? But wait! Maybe instead he intends to inflict unbounded negative utility if you do that -- what must you do to be saved from that fate? Maybe the next rock you see is a superintelligent, superpowerful alien who, for its superunintelligible reasons requires you to -- well, you get the idea.
The difference between this and the standard Mugger scenario is that by making his offer, the mugger promotes to attention the hypothesis that he presents. However, for the usual Bayesian reasons, this must at the same time promote many other unlikely hypotheses, such as the mugger being an evil tempter. I don't see any reason to suppose that the mugger's claim promotes any of these hypotheses sufficiently to distinguish the two scenarios. If you're vulnerable to Pascal's Mugger, you've already been mugged by your own decision theory.
If your decision theory has you walking through the world obsessed with tiny possibilities of vast utility fluctuations, like a placid-seeming vacuum state seething with colossal energies, then your decision theory is wrong. I propose the following constraint on utility-based rational decision theories:
The Anti-Mugging Axiom: For events E and current knowledge X, let P(E|X) = probability of E given X, U(E|X) = utility of E given X. For every state of knowledge X, P(E|X) U(E|X) is bounded over all events E.
The quantifiers here are deliberately chosen. For each X there must be an upper bound, but no bound is placed on the amount of probability-weighted utility that one might discover.
Well, it's been two-and-a-quarter years since that post, but I'll comment anyway.
Isn't the anti-mugging axiom inadequate as stated? Basically, you're saying the expected utility is bounded, but bounded by what? If the bound is, for example, equivalent to 20 happy years of life, you're going to get mugged until you can barely keep from starving. If it's less than 20 happy years of life, you probably won't bother saving for retirement (assuming I'm interpreting this correctly).
Another way of looking at it, is that, let's say the bound is b, then U(E|X) < ... (read more)