Graham Priest discusses The Liar's Paradox for a NY Times blog. It seems that one way of solving the Liar's Paradox is defining dialethei, a true contradiction. Less Wrong, can you do what modern philosophers have failed to do and solve or successfully dissolve the Liar's Paradox? This doesn't seem nearly as hard as solving free will.
This post is a practice problem for what may become a sequence on unsolved problems in philosophy.
What the paradox tells me is that our understanding of the nature of language, logic, and mathematics is seriously incomplete, which might lead to disaster if we do anything whose success depends on such understanding.
The paradox is related to the fact that we don't have a formal language that can talk about all of of the content of math/logic, for example, the truth value (or meaningfulness, if some sentences are allowed to be meaningless) of sentences in the language itself, which is obviously part of math or logic.
Since our current best ideas about how to let an AI do math is through formal languages, this implies that we are still far from having an AI achieve the same kind of understanding of math as us. We humans use natural language which does have these paradoxes which we don't know how to resolve, but at least we are not (or at least not obviously) constrained in which parts of math we can even talk, or think about.
I deem "this sentence is false" as meaningless and unworthy of further scrutiny from me.
Challenge: On the basis of the above, paperclip-pump me. (Or assume I'm a human and money-pump me.)