Graham Priest discusses The Liar's Paradox for a NY Times blog. It seems that one way of solving the Liar's Paradox is defining dialethei, a true contradiction. Less Wrong, can you do what modern philosophers have failed to do and solve or successfully dissolve the Liar's Paradox? This doesn't seem nearly as hard as solving free will.
This post is a practice problem for what may become a sequence on unsolved problems in philosophy.
In my mind, I have the category "meaningless" as statements which can't be assigned a truth value without breaking the consistency of our system, and "trivial" as statements which can be assigned a truth value, but don't pay any rent at all.
Try this way: Working in boolean logic, "This sentence is either true or false" can be true, and it can't be false, right? If we can make these definite remarks about its properties within our system, can we still call it meaningless? Even though it doesn't have useful consequences. (A formal way of saying it doesn't have useful consequences, I guess, is to say that for our useless statement B and for all A, P(A) = P(A|B) -- it isn't any evidence for anything at all.)
Given your definitions, that makes sense. One of the points I was trying to make, though, is that "meaningless" is one of those words with several related but slightly different interpretations, and that a lot of the trouble in this thread seems to have come from conflicts between those interpretations. In particular, a lot of the people here seem to be using it to mean "lacks evidential value" without making a distinction between the cases you do.
As to which definition to use: I'd say it depends on what we're looking at. If we're try... (read more)