There are a lot of unknowns about the future of intelligence: artificial intelligence, uploading, augmentation, and so on. Most of these technologies are likely a ways off, or at least far enough away to confound predictions. Genetic engineering, however, presents a very near term and well understood possibility for developing greater intelligence.
A recent news story published in South China Morning and discussed on Steve Hsu's blog highlights China's push to understand the genetic underpinnings of intelligence. China is planning to sequence the full genome of 1000 of its brightest kids, in the hopes of locating key genes responsible for higher intelligence. Behind the current project is BGI, which is aiming to be (or already is) the largest DNA sequencing center in the world.
Suppose that intelligence has a large genetic component (reasonable, considering estimates for heritability). Suppose that the current study unveils those components (if not this study, then likely another study soon, perhaps with millions of genomes). Then with some advances in genetic engineering China could quickly raise a huge population of incredibly intelligent people.
Such an endeavor could never be carried out on a large, public scale in the West, but it seems China has fewer qualms.
The timescales here are on the order of 20 years, which are relevant compared to most estimates for AI and WBE. More, genetic engineering human intelligence seems to be on a much more predictable path than other intelligence technologies. For both these reasons I think understanding, discussing, and keeping an eye on this issue is important.
What are the ramifications for
- AI research? FAI? In particular relating to enhanced humans speeding further development
- Whole Brain Emulation research?
- Other technologies that may pose existential risks (nanotech, biotech, etc, especially in light of the fact that it may be China leading the way)?
- The potential for recursive feedback? (Smarter scientists engineering smarter scientists. Less worrisome due to timescales)
Of course, there are a host of other interesting questions relating to societal impact, both near and long term. Feel free to discuss these as well.
Folks at the Singularity Institute have been watching the reproductive biotechnology area for quite a while, e.g. it plays a significant role in the Uncertain Future modeling app. Some relevant points:
Embryo selection technology (which is the only existing way to apply genetic findings on IQ) on its own has limited impact: if you produce a hundred embryos and have a perfect predictive model of intelligence, you could get a boost of perhaps a standard deviation for a typical couple. You can already get this benefit by using donor sperm and eggs, if one is willing to have genetically unrelated kids, and China doesn't seem to have strongly encouraged doing so. Eggs from elite donor females are also scarce.
It gets much more powerful with the technology for artificial gametes, which let you make numerous embryos, boost the supply of eggs that can be obtained from a given elite donor to meet demand, and have multiple generations in vitro (create many embryos, cultivate artifical gametes from the best combinations, and repeatedly cross them to get what would otherwise take hundreds of years in only one). Artificial gametes are a pretty natural extension of stem cell technology, but people talk about having them in ten years, not the next couple years (when genomics will get to the point of plumbing the genetic architecture of intelligence and other traits conducive to scientific progress).
The expected combination of behavioral genomics and improvements in artificial gametes or genetic engineering technology makes the idea of lasting stagnation or social collapse look less plausible, and concentrates more of the probability mass for AI and WBE in this century than otherwise.
The increase of intelligence relative to other inputs in the scientific process makes it more likely that scientists and developers will see and respond wisely to risks, making it more plausible that AI development will proceed safely.
The effect of smarter political leadership will be attenuated and delayed: it takes time to rise to high positions.
Mass improvements of the electorate/selectorate will be even slower, as it will take a number of decades for enhanced kids to approach a majority, especially given likely limited adoption (even with big subsidies and measures like relaxation of the one-child policy for enhanced kids).
The potential gains from enhancement are much larger for those willing to have children genetically unrelated to them, or regions which encourage this.
Those working to reduce existential risk should shift intellectual effort at the margin to projects that are time-sensitive (e.g. the chance that AI or engineered extinction plagues will be easy to produce sooner than generally thought) and expect future enhanced folk to do more of the cognitive heavy lifting.
Efforts to transmit relevant information and values to young people/the next generation will become more important in the next 20 years or so. Ensuring that enhanced kids are exposed to ideas that encourage them to reduce existential risk as they grow up looks more important. It would be good to have a clear and accessible picture of the risks landscape available by then.
Encouraging somewhat faster and more evenly distributed adoption of the enhancement technologies looks desirable. In Western countries, this means relaxing or avoiding restrictive regulations, spreading pro-enhancement memes, and the development of the personal genomics industry (companies like 23andme or Counsyl).
At any given time, there will be a 15-20 year lag between the ability distribution of enhanced young adults who have begun to contribute to research and economic growth and the distribution of newborns with the very latest enhancements. This looks like something that will boost growth substantially, but the big recursive effects look like they won't have time to come into play until the second half of the century.
Genomics studies of intelligence may lead to the development of cognitive enhancement drugs on a faster timescale (although testing and approval still takes close to a decade, that's less than growth to maturity). This is less certain (genetic variation affecting intelligence may mostly be rare idiosyncratic stuff, or only relevant in maturation and early brain development), but could be applied to a much larger population of existing adults, and children born without genetic enhancement.
Complete Genomics originally claimed they would sequence 10,000 genomes in 2010. In the article you linked to, they gave delays in establishing their main sequencing facility as a reason for promising only 5,000 for 2010. According to their wikipedia article, they only wound up sequencing 300 genomes in the third quarter of 2010. The hype in this area is usually one or two years premature (although that's an amazingly short hype cycle nonetheless!), even with order of magnitude annual growth in sequencing.
I think the average IQ of politicians will not change much for the first few generations after the introduction of GE boosted babies.
Look at CA politicians column in the first table
Sure they are clever but they mostly seem to cluster in the 120 IQ range for functioning democracies, nearly regardless of the country mean. Also I need to crunch the data but my impression seems to be that some smaller countries tend to have usually smart leade... (read more)