One of the reasons that I am skeptical of contributing money to the SIAI is that I simply don't know what they would do with more money. The SIAI currently seems to be viable. Another reason is that I believe that an empirical approach is required, that we need to learn more about the nature of intelligence before we can even attempt to solve something like friendly AI.
I bring this up because I just came across an old post (2007) on the SIAI blog:
We aim to resolve this crucial question by simultaneously proceeding on two fronts:
1. Experimentation with practical, contemporary AI systems that modify and improve their own source code.
2. Extension and refinement of mathematical tools to enable rigorous formal analysis of advanced self-improving AI’s.[...]
For the practical aspect of the SIAI Research Program, we intend to take the MOSES probabilistic evolutionary learning system, which exists in the public domain and was developed by Dr. Moshe Looks in his PhD work at Washington University in 2006, and deploy it self-referentially, in a manner that allows MOSES to improve its own learning methodology.
[...]
Applying MOSES self-referentially will give us a fascinating concrete example of self-modifying AI software – far short of human-level general intelligence initially, but nevertheless with many lessons to teach us about the more ambitious self-modifying AI’s that may be possible.
[...]
We are seeking additional funding so as to enable, initially, the hiring of two doctoral or post-doctoral Research Fellows to focus on the above two areas (practical and theoretical exploration of self-modifying AI).
[...]
Part of our goal is to make progress on these issues ourselves, in-house within SIAI; and part of our goal is to, by demonstrating this progress, interest the wider AI R&D community in these foundational issues. Either way: the goal is to move toward a deeper understanding of these incredibly important issues.
[...]
SIAI must boot-strap into existence a scientific field and research community for the study of safe, recursively self-improving systems; this field and community doesn’t exist yet.
Some questions:
- Has any progress been made on the points mentioned in the announcement above?
- Is the SIAI still willing to pursue experimental AI research or does it solely focus on hypothetical aspects?
- What would the SIAI do given various amounts of money?
I also have some questions regarding the hiring of experts. Is there a way to figure out what exactly the current crew is working on in terms of friendly AI research? Peter de Blanc seems to be the only person who has done some actual work related to artificial intelligence.
I am aware that preparatory groundwork has to be done and capital has to be raised. But why is there no timeline? Why is there no progress report? What is missing for the SIAI to actually start working on friendly AI? The Singularity Institute is 10 years old, what is planned for the decade ahead?
An AGI is an extremely complex entity. You don't get to decide arbitrarily how to make it. If nothing else, there are fundamental computational limits on Bayesian inference that are not even well-understood yet. So if you were planning to make your FAI a Bayesian then you should probably at least be somewhat familiar with these issues, and of course working towards their resolution will help you better understand your constraints. I personally strongly suspect there are also fundamental computational limits on utility maximization, so if you were planning on making your FAI a utility maximizer then again this is probably a good thing to study. Maybe you don't consider this AGI research but the main approach to AGI that I consider feasible would benefit at least somewhat from such understanding.
In my opinion, provably friendly AI is hopeless to get to before someone else gets to AGI. The best thing one can hope for is (i) brain uploads come first, or (ii) a fairly transparent AGI design coupled with a good understanding of meta-ethics. This means that as far as I can see, if you want to reduce x-risk from UFAI then you should be doing one of the following: