I'm trying to like Beethoven's Great Fugue.
"This piece alone completely changed my life and how I perceive and appreciate music."
"Those that claim to love Beethoven but not this are fakers, frauds, wannabees, but most of all are people who are incapable of stopping everything for 10 minutes and reveling in absolute beauty, absolute perfection. Beethoven at his finest."
"This is the absolute peak of Beethoven."
"It's now my favorite piece by Beethoven."
These are some of the comments on the page. Articulate music lovers with excellent taste praise this piece to heaven. Plus, it was written by Beethoven.
It bores me.
The first two times I listened to it, it stirred no feelings in me except irritation and impatience for its end. I found it devoid of small-scale or large-scale structure or transitions, aimless, unharmonious, and deficient in melody, rhythm, and melodic or rhythmic coordination between the four parts, none of which I would care to hear by themselves (which is a key measure of the quality of a fugue).
Yet I feel strong pressure to like it. Liking Beethoven's Great Fugue marks you out as a music connoisseur.
I feel pressure to like other things as well. Bitter cabernets, Jackson Pollack paintings, James Joyce's Finnegan's Wake, the Love Song of J. Alfred Prufrock, the music of Arnold Schoenberg, and Burning Man. This is a pattern common to all arts. You recognize this pattern in a work when:
- The work in question was created by deliberately taking away the things most people like best. In the case of wine, sweetness and fruitiness. In the case of Jackson Pollack, form, variety, relevance, and colors not found in vomit. In the music of Alban Berg, basic music theory. In every poem in any volume of "Greatest American Poetry" since 2000, rhyme, rhythm, insight, and/or importance of subject matter. In the case of Burning Man, every possible physical comfort. The work cannot be composed of things that most people appreciate plus things connoisseurs appreciate. It must be difficult to like.
- The level of praise is absurd. The Great Fugue, Beethoven's finest? I'm sorry; my imagination does not stretch that far. "Burning Man changed my life completely" - I liked Burning Man; but if it changed your life completely, you probably had a vapid life.
- People say they hated it at first, but over time, grew to love it. One must be trained to like it.
- People give contradictory reasons for liking it. One person says the Great Fugue has a brilliant structure; another says it is great because of its lack of structure.
- Learning to like it is a rite of passage within a particular community.
Here are some theories as to how a work becomes the darling of its medium or genre:
- It is really and truly excellent. This would explain features 2 and 5.
- It is a runaway peacock's-tail phenomenon: Someone made something that stood out in some way, and it got attention; and people learned to like things like that, and so others made things that stood out more in the same way, until we ended up with Alban Berg. This would explain features 2 and 3.
- When an artistic institution enshrines good art as exemplars, it increases the status of the small number of people who can produce good art. When an institution enshrines bad art as exemplars, it decreases the status of people who can produce or recognize good art. As institutions grow in size, the ratio (# people advantaged by enshrining bad art / # people advantaged by enshrining good art) grows. This would explain all five features.
- As people learn more about an art form, they can more-easily predict it, and need more and more novelty to keep them interested; like porn viewers who seek out movies with continually-stranger sex acts. If ivy-league universities had departments of pornography, they would scoff at the simplicity of films lacking bondage, machines, or animals. This would explain features 1, 3, and 5.
- Practitioners of an art appreciate technique more than content. This is why authors love Thomas Pynchon's Gravity's Rainbow and Delaney's Dhalgren; they're full of beautiful phrases and metaphors, ways of making transitions, and other little tricks that authors can admire and learn to use, even though these books aren't as interesting to readers. This could explain feature 5.
(Don't assume that the same theory is true for each of my examples. I think that the wine hierarchy and Alban Berg are nonsense, Jackson Pollack is an interesting one-trick pony, Citizen Kane was revolutionary and is important for cinematographers to study but is boring compared to contemporary movies, and Burning Man is great but would be even better with showers.)
I could keep listening to the Great Fugue, and see if I, too, come to love it in time. But what would that prove? Of course I would come to love it in time, if I listen to it over and over, earnestly trying to like it, convinced that by liking the Great Fugue I, too, would attain the heights of musical sophistication.
The fact that people come to like it over time is not even suggested by theory 1 - even supposing the music is simply so great as to be beyond the appreciation of the typical listener, why would listening to it repeatedly grant the listener this skill?
I have listened to it a few times, and am growing confused as to whether I like it or not. Why is this? Since when does one have to wonder whether one likes something or not?
I am afraid to keep listening to the Great Fugue. I would come to like it, whether it is great art or pretentious garbage. That wouldn't rule out any of my theories.
How can I figure out which it is before listening to it repeatedly?
To understand musical consonance/dissonance, you must understand that consonance of simple harmonic ratios is an artifact of a much simpler underlying rule. The human hearing system does not analyze frequency ratios of individual notes, it examines the frequency domain clustering of partials of the sound as a whole.
If you listen to two sine waves of near identical frequency they sound consonant. Widen the frequency difference and they become dissonant. Further widen the frequency difference and they become consonant again. This was measured back in 1967 by R. Plomp and W. J. M. Levelt. The consonance of a musical harmony depends on the separation of the individual partials. We need a "critical bandwidth" of separation between frequencies to clearly distinguish them. You could think of dissonance as the unpleasant feeling of hearing different frequencies but failing to resolve them.
The majority of musical instruments used in Western classical music create sound by vibration constrained at two points, either the ends of a string or the ends of a column of air. Therefore the partials are all integer multiples [2] of the fundamental. It turns out that if these sounds are played together at small integer frequency ratios, the frequency of the partials align such that the quantity of dissonant, smaller than the "critical bandwidth", frequency differences is at a local minimum.
However, percussion instruments are not constrained in this way, so cultures with a percussion focused musical tradition (eg. Indonesian gamelan music) developed alternative tuning systems better suited to the timbres of their instruments. Early electronic musicians, eg. Wendy Carlos, also noticed how the consonance of different tuning systems depended on the timbre of the notes.
As far as I am aware, the first person to mathematically formalize this relationship, and develop a method to generate arbitrary tuning systems for arbitrary timbres and vice-versa, was William Sethares [3]. He has a great webpage at http://sethares.engr.wisc.edu/ , with many audio examples. His book "Tuning Timbre Spectrum Scale" should be considered the most important book on music theory ever written because it generalizes all previous musical theories, and solves the problem of the exhaustion of harmonic novelty in music without having to resort to unlistenable crap like serialism.
And now we get to the link to the main article, and the reason why Sethare's work was such a revelation to me. I shared a house with a music student for several years, and I became heavily involved in the classical music subculture. Back then I only knew of the Pythagorean ratio-based concept of harmony. I listened to a great variety of Western classical music, and attended several concerts. As my knowledge increased, I became disillusioned with pre-modern classical music, because each new composition began to sound like a reworking of something I had heard before. Traditional music theory simply didn't have enough scope for novelty. I studied the works of Harry Partch, who pushed ratio-based music theory about as far as it can go, and I wasted a lot of time attempting to extend his theory, but I never felt I had reached a satisfactory conclusion.
Of course I was exposed to atonal composition via my musician friends, and my initial reaction was the same as almost everybody's: I hated it. But both the obvious high status of this kind of music and my lack of knowledge of any alternative source of novelty slowly changed my preferences. I started listening to Second Viennese School composers and free jazz. The more I listened the more I liked it, and I gradually turned into an atonal music snob like my musician friends.
And then I left university and lost all contact with them. I forgot all about classical music for several years. When I listened to atonal music again I found I had reverted to my original preference. I'm now very certain the only reason I liked it was social signaling. I declared music to be dead and lost all interest in it.
When I later discovered Sethares's work it shook my beliefs about music to the core. My whole atonal adventure was built on a mistake. We're no longer limited by physical instruments and it's really possible to compose music simultaneously strange and beautiful. I now promote Sethares's work in the hope that more musicians will adopt it and create sometime great.
[1] R. Plomp and W. J. M. Levelt, "Tonal Consonance and Critical Bandwidth," Journal of the Acoustical Society of America.38, 548-560 (1965). [2] Approximately. Note that octaves on a piano are tuned slightly sharp, because piano strings are not simple mathematical abstractions, but have thickness and other properties such that they don't produce perfectly harmonic sound. [3] Sethares, W.A. (1993), Local consonance and the relationship between timbre and scale. Journal of the Acoustical Society of America, 94(1): 1218.
That's fascinating, thank you! I will definitely check out Sethares' work, as a music listener and an amateur composer. It sounds very different for the type of music I have the most experience with (choral church music of various eras.)