Today's post, Beautiful Math was originally published on 10 January 2008. A summary (taken from the LW wiki):
The joy of mathematics is inventing mathematical objects, and then noticing that the mathematical objects that you just created have all sorts of wonderful properties that you never intentionally built into them. It is like building a toaster and then realizing that your invention also, for some unexplained reason, acts as a rocket jetpack and MP3 player.
Discuss the post here (rather than in the comments to the original post).
This post is part of the Rerunning the Sequences series, where we'll be going through Eliezer Yudkowsky's old posts in order so that people who are interested can (re-)read and discuss them. The previous post was 0 And 1 Are Not Probabilities, and you can use the sequence_reruns tag or rss feed to follow the rest of the series.
Sequence reruns are a community-driven effort. You can participate by re-reading the sequence post, discussing it here, posting the next day's sequence reruns post, or summarizing forthcoming articles on the wiki. Go here for more details, or to have meta discussions about the Rerunning the Sequences series.
This is something I've been thinking about quite a lot lately. Mathematics, as we do it, seems to be a feature of the physical world that requires something like a combinatorial grammar and something like the parietal lobe that can manipulate and change visual representations based on that grammar.
Categories exist, in a sense, but they don’t exist in the form we tend to attribute to them. "Number" is, in a way, a fuzzy sort of concept; on one hand numbers are a linguistic convention that allows us to convey socially relevant information and to organize information for our own benefit. This allows us to construct a surrounding syntax that allows us to reason about them at the level of language. On the other they seem to have a rigid structure and meaning. Of course this latter issue can be explained away as the result of a user illusion – our consciousness is itself lossy, fuzzy, and not at all what we think that it is before having further training in areas such as cognitive neuroscience, why should we suppose that one part of conscious access breaks this pattern and how could it do so?
It seems like counting is really just a method for attaching a token that points at a space of possible meanings, or more realistically, a token that picks out a fuzzy parameter representing a subjective impression of a scenario. I count 10 apples, but there is only one of each thing, none of the objects are actually identical and I don't think they could be in principle (though I could be confused here). When I say "there are 10 apples here", I’m denoting the fact that another being with an ontology sufficiently similar to my own will recognize that there are 10 apples (though I don't think about it that way, this is an implicit assumption). The apples fit a certain set of statistical regularities that lead me to classify them as such (having something like a well-trained neural network for such tasks), and the combinatorial, lexical aspect of my thinking appropriates a label known as a base 10 Arabic numeral to the scenario. This is useful to me because it allows me to think at the level of syntax – I know that "apples" (things that I classify as such) tend to function in a certain way, and salient aspects of apples – primary features in my classification algorithm – allow me to map a finite set of future courses of action involving them.
Viewing mathematics in this way, as a set of evolved cognitive phenomena that works because being able to extract, organize and communicate information about you/your environment is evolutionarily advantageous, seems to make it tough to be a Platonist.
Nor is it clear in what way they're objects in the first place. I mean, arguably there's no such thing in reality as an apple - there's a bunch of atoms which smoothly coexist with other atoms we think of as air or table, and any cutoff point is inherently arbitrary.
In fact, that's my theory, or perhaps a proto-theory: that what's needed to develop mathematics is not so much an evolved faculty of syntax, but something more basic: an ability to conceptualize something that's different from something else. A way ... (read more)