Apologies for the rather mathematical nature of this post, but it seems to have some implications for topics relevant to LW. Prior to posting I looked for literature on this but was unable to find any; pointers would be appreciated.
In short, my question is: How can we prove that any simulation of a problem really simulates the problem?
I want to demonstrate that this is not as obvious as it may seem by using the example of Newcomb's Problem. The issue here is of course Omega's omniscience. If we construct a simulation with the rules (payoffs) of Newcomb, an Omega that is always right, and an interface for the agent to interact with the simulation, will that be enough?
Let's say we simulate Omega's prediction by a coin toss and repeat the simulation (without payoffs) until the coin toss matches the agent's decision. This seems to adhere to all specifications of Newcomb and is (if the coin toss is hidden) in fact indistinguishable from it from the agent's perspective. However, if the agent knows how the simulation works, a CDT agent will one-box, while it is assumed that the same agent would two-box in 'real' Newcomb. Not telling the agent how the simulation works is never a solution, so this simulation appears to not actually simulate Newcomb.
Pointing out differences is of course far easier than proving that none exist. Assuming there's a problem we have no idea which decisions agents would make, and we want to build a real-world simulation to find out exactly that. How can we prove that this simulation really simulates the problem?
(Edit: Apparently it wasn't apparent that this is about problems in terms of game theory and decision theory. Newcomb, Prisoner's Dilemma, Iterated Prisoner's Dilemma, Monty Hall, Sleeping Beauty, Two Envelopes, that sort of stuff. Should be clear now.)
"Impractical" means that you don't want to or can't realize the problem in its original form, for example because it would be too expensive or because you don't have a prison handy and can't find any prisoner rental service.
"Practical" pretty much means the opposite, for example because it's inexpensive or because you happen to be a prison director and are not particularly bent on interpreting the law orthodoxly.
"Analogous" basically means that if you can find isomorphisms between the set of the states of problem A and the set of the states of problem B as well as between the set of decisions of problem A and the set of decisions of problem B, then each thus mapped pair of decisions or states is called analogous if analagous decisions lead to analogous states and analogous states imply analogous decisions.
This doesn't sound like a mathematical problem, then. It's a modeling problem.