A general problem with big integrals in your definition of the abstract function P: Suppose that C is a statement whose shortest proof takes longer to write out than your agent has time. When asked for P(C), your abstract function P should not assign a number that your agent is physically incapable of assigning.
More concrete problem: since your energies are all greater than 0, proofs (evidence) with long length get weighted greater (are lower energy) than short proofs.
Evidence with long length is weighted less since it contributes less to the energy.
When computing probabilities at finite temperature to finite precision, it should be possible to ignore long evidence (at least evidence which is long wrt the given sentence). If the shortest evidence for a sentence is very long, it means its probability is "marginal" in some sense (since the total energy depends weakly on the value of the probability field at this statement). For sentences which cannot be decomposed into simpler sentences using propositional calculus operations, "marginal" probably means close to 1/2.
Related but simpler concept - I remember thinking about assigning a temperature on a prior distribution, but it didn't normalize if it wasn't penalizing longer hypotheses even harder than usual.
Followup to: Overcoming the Loebian obstacle using evidence logic
In the previous post I proposed a probabilistic system of reasoning for overcoming the Loebian obstacle. For a consistent theory it seems natural the expect such a system should yield a coherent probability assignment in the sense of Christiano et al. This means that
a. provably true sentences are assigned probability 1
b. provably false sentences are assigned probability 0
c. The following identity holds for any two sentences φ, ψ
[1] P(φ) = P(φ and ψ) + P(φ and not-ψ)
In the previous formalism, conditions a & b hold but condition c is violated (at least I don't see any reason it should hold).
In this post I attempt to achieve the following:
Construction
Define a probability field to be a function p : {sentences} -> [0, 1] satisfying the following conditions:
The final probability assignment is defined to be
P(φ) = Integralp [e-E(p)/T p(φ)] / Integralp e-E(p)/T
Here T >= 0 is a parameter representing the magnitude of logical uncertainty. The integral is infinite-dimensional so it's not obviously well-defined. However, I suspect it can be defined by truncating to a finite set of statements and taking a limit wrt this set. In the limit T -> 0, the expression should correspond to computing the centroid of the set of minima of E (which is convex because E is convex).
Remarks