So, I've been hearing a lot about the awesomeness of Solomonoff induction, at least as a theoretical framework. However, my admittedly limited understanding of Solomonoff induction suggests that it would form an epicly bad hypothesis if given a random string. So my question is, if I misunderstood, how does it deal with randomness? And if I understood correctly, isn't this a rather large gap?
Edit: Thanks for all the comments! My new understanding is that Solomonoff induction is able to understand that it is dealing with a random string (because it finds itself giving equal weight to programs that output a 1 or a 0 for the next bit), but despite that is designed to keep looking for a pattern forever. While this is a horrible use of resources, the SI is a theoretical framework that has infinite resources, so that's a meaningless criticism. Overall this seems acceptable, though if you want to actually implement a SI you'll need to instruct it on giving up. Furthermore, the SI will not include randomness as a distinct function in its hypothesis, which could lead to improper weighting of priors, but will still have good predictive power -- and considering that Solomonoff induction was only meant for computable functions, this is a pretty good result.
I'm not sure why we need to make that distinction. The Solomonoff and Levin constructions are equivalent. The prior built from all deterministic programs that output bit strings, and the prior built from all computable probability distributions, turn out to be the same prior. See e.g. here for proofs and references.
Then I'm confused, because the two would seem to produce two very different answers on the same string.
Since a string with very high Kolmogorov complexity can be clearly produced by a uniform distribution, the Solomonoff prior would converge to a very high complexity hypothesis, while the Levin mixture would just assign 0.5 to 0 and 0.5 to 1.
What am I missing here?