Among my friends interested in rationality, effective altruism, and existential risk reduction, I often hear: "If you want to have a real positive impact on the world, grad school is a waste of time. It's better to use deliberate practice to learn whatever you need instead of working within the confines of an institution."
While I'd agree that grad school will not make you do good for the world, if you're a self-driven person who can spend time in a PhD program deliberately acquiring skills and connections for making a positive difference, I think you can make grad school a highly productive path, perhaps more so than many alternatives. In this post, I want to share some advice that I've been repeating a lot lately for how to do this:
- Find a flexible program. PhD programs in mathematics, statistics, philosophy, and theoretical computer science tend to give you a great deal of free time and flexibility, provided you can pass the various qualifying exams without too much studying. By contrast, sciences like biology and chemistry can require time-consuming laboratory work that you can't always speed through by being clever.
- Choose high-impact topics to learn about. AI safety and existential risk reduction are my favorite examples, but there are others, and I won't spend more time here arguing their case. If you can't make your thesis directly about such a topic, choosing a related more popular topic can give you valuable personal connections, and you can still learn whatever you want during the spare time a flexible program will afford you.
- Teach classes. Grad programs that let you teach undergraduate tutorial classes provide a rare opportunity to practice engaging a non-captive audience. If you just want to work on general presentation skills, maybe you practice on your friends... but your friends already like you. If you want to learn to win over a crowd that isn't particularly interested in you, try teaching calculus! I've found this skill particularly useful when presenting AI safety research that isn't yet mainstream, which requires carefully stepping through arguments that are unfamiliar to the audience.
- Use your freedom to accomplish things. I used my spare time during my PhD program to cofound CFAR, the Center for Applied Rationality. Alumni of our workshops have gone on to do such awesome things as creating the Future of Life Institute and sourcing a $10MM donation from Elon Musk to fund AI safety research. I never would have had the flexibility to volunteer for weeks at a time if I'd been working at a typical 9-to-5 or a startup.
- Organize a graduate seminar. Organizing conferences is critical to getting the word out on important new research, and in fact, running a conference on AI safety in Puerto Rico is how FLI was able to bring so many researchers together on its Open Letter on AI Safety. It's also where Elon Musk made his donation. During grad school, you can get lots of practice organizing research events by running seminars for your fellow grad students. In fact, several of the organizers of the FLI conference were grad students.
- Get exposure to experts. A top 10 US school will have professors around that are world-experts on myriad topics, and you can attend departmental colloquia to expose yourself to the cutting edge of research in fields you're curious about. I regularly attended cognitive science and neuroscience colloquia during my PhD in mathematics, which gave me many perspectives that I found useful working at CFAR.
- Learn how productive researchers get their work done. Grad school surrounds you with researchers, and by getting exposed to how a variety of researchers do their thing, you can pick and choose from their methods and find what works best for you. For example, I learned from my advisor Bernd Sturmfels that, for me, quickly passing a draft back and forth with a coauthor can get a paper written much more quickly than agonizing about each revision before I share it.
- Remember you don't have to stay in academia. If you limit yourself to only doing research that will get you good post-doc offers, you might find you aren't able to focus on what seems highest impact (because often what makes a topic high impact is that it's important and neglected, and if a topic is neglected, it might not be trendy enough land you good post-doc). But since grad school is run by professors, becoming a professor is usually the most salient path forward for most grad students, and you might end up pressuring yourself to follow that standards of that path. When I graduated, I got my top choice of post-doc, but then I decided not to take it and to instead try earning to give as an algorithmic stock trader, and now I'm a research fellow at MIRI. In retrospect, I might have done more valuable work during my PhD itself if I'd decided in advance not to do a typical post-doc.
That's all I have for now. The main sentiment behind most of this, I think, is that you have to be deliberate to get the most out of a PhD program, rather than passively expecting it to make you into anything in particular. Grad school still isn't for everyone, and far from it. But if you were seriously considering it at some point, and "do something more useful" felt like a compelling reason not to go, be sure to first consider the most useful version of grad that you could reliably make for yourself... and then decide whether or not to do it.
Please email me (lastname@thisdomain.com) if you have more ideas for getting the most out of grad school!
If I remember my Lakoff & Núñez correctly, they were arguing that even the most abstract and un-physical-seeming of maths is constructed on foundations that derive from the way we perceive the physical world.
Let me pick up the book again... ah, right. They define two kinds of conceptual metaphor:
Their argument is that for any kind of abstract mathematics, if you trace back its origin for long enough, you finally end up at some grounding and linking metaphors that have originally been derived from our understanding of physical reality.
As an example of the technique, they discuss the laws of arithmetic as having been derived from four grounding metaphors: Object Collection (if you put one and one physical objects together, you have a collection of two objects), Object Construction (physical objects are made up of smaller physical objects; used for understanding expressions like "five is made up of two plus three" or "you can factor 28 into 7 times 4"), Measuring Stick (physical distances correspond to numbers; gave birth to irrational numbers, when the Pythagorean theorem was used to prove their existence by assuming that there's a number that corresponds to the length of the hypotenuse), and Motion Along A Path (used in the sixteenth century to invent the concept of the number line, and the notion of a number as lying between two other numbers).
Now, they argue that these grounding metaphors, each by themselves, are not sufficient to define the laws of arithmetic for negative numbers. Rather you need to combine them into a new metaphor that uses parts of each, and then define your new laws in terms of that newly-constructed metaphor.
Defining negative numbers is straightforward using these metaphors: if you have the concept of a number line, you can define negative numbers as "point-locations on the path on the side opposite the origin from positive numbers", so e.g. -5 is the point five steps to the left of the origin point, symmetrical to +5 which is five steps to right of the origin point.
Next we can use Motion Along A Path to define addition and subtraction: adding positive numbers is moving towards the right, addition of negative numbers is moving towards the left, subtraction of positive numbers is moving towards the left, and subtraction of negative numbers is moving towards the right. Multiplication by a positive number is also straightforward: if you are multiplying something by n times, you just perform the movement action n times.
But multiplication by a negative number has no meaning in the source domain of motion. You can't "do something a negative number of times". A new metaphor must be found, constrained by the fact that it needs to fit the fact that we've found 5 (-2) = -10 and that, by the law of commutation (also straightforwardly derivable from the grounding metaphors), (-2) 5 = -10.
Now:
So in other words, we have taken some grounding metaphors and built a new metaphor that blends elements of them, and after having constructed that new metaphor, we use the terms of that combined metaphor to define a new metaphor on top of that.
While this example was in the context of an obviously physically applicable part of maths, their argument is that all of maths is built in this way, starting from physically grounded metaphors which are then extended and linked to build increasingly abstract forms of mathematics... but all of which are still, in the end, constrained by the physical regularities they were originally based on:
To take a step back. the discussion is about mathematical Platonism, a theory of mathematical truth which is apparently motivated by the Correspondence theory of truth. That is being rivaled by another theory, also motivated by CToT, wherein the truth-makers of mathematical statements are physical facts, not some special realm of immaterial entities. The relevance of my claim that there are unphysical mathematical truths is that is an argument against the second claim.
Lakoff and Nunez give an account of the origins and nature of mathematical thought that... (read more)