Recently the Large Hadron Collider was damaged by a mechanical failure. This requires the collider to be warmed up, repaired, and then cooled down again, so we're looking at a two-month delay.
Inevitably, many commenters said, "Anthropic principle! If the LHC had worked, it would have produced a black hole or strangelet or vacuum failure, and we wouldn't be here!"
This remark may be somewhat premature, since I don't think we're yet at the point in time when the LHC would have started producing collisions if not for this malfunction. However, a few weeks(?) from now, the "Anthropic!" hypothesis will start to make sense, assuming it can make sense at all. (Does this mean we can foresee executing a future probability update, but can't go ahead and update now?)
As you know, I don't spend much time worrying about the Large Hadron Collider when I've got much larger existential-risk-fish to fry. However, there's an exercise in probability theory (which I first picked up from E.T. Jaynes) along the lines of, "How many times does a coin have to come up heads before you believe the coin is fixed?" This tells you how low your prior probability is for the hypothesis. If a coin comes up heads only twice, that's definitely not a good reason to believe it's fixed, unless you already suspected from the beginning. But if it comes up heads 100 times, it's taking you too long to notice.
So - taking into account the previous cancellation of the Superconducting Supercollider (SSC) - how many times does the LHC have to fail before you'll start considering an anthropic explanation? 10? 20? 50?
After observing empirically that the LHC had failed 100 times in a row, would you endorse a policy of keeping the LHC powered up, but trying to fire it again only in the event of, say, nuclear terrorism or a global economic crash?
So what if we are uncertain about the size of the universe (so that its size depends on which possible world we are in)? Then we are faced with the same question as before: Should we treat finding ourselves in bigger universes as more probable a priori, or not?
Formally, the question we face is, if we have a prior P0 over possible worlds, what should our prior over (possible world, space-time-Everett location) pairs be?
(As before, we may want to weigh Everett branches in the obvious way.) Both of these definitions give us the weak principle of self-indication (defined in the previous comment), since they agree with the previous comment's definition when all possible worlds contain the same number of locations. So they both support thirding in Sleeping Beauty.
But which of the definitions should we adopt? Note that sampling without self-indication has the property that P(w) = P0(w), i.e., before we condition on any evidence (including the fact that we are conscious observers), the probability of finding ourselves in world w is exactly the probability of that world, according to P0. On the face of it, this sounds exactly like what we mean by having a prior P0 over the possible worlds.
I think we may mean different things with P0 depending on how we arrive at P0, though. But for the moment, let me note that while the principle of weak self-indication forces me to accept the presumptuous philosopher's position in both the Case of the Twin Stars and the Case of the Death Rays, I may still have a good reason to reject the conclusion that the cosmos is infinite with probability one.