I've been reading through the sequences, and am currently working through the Intro to Bayes' Theorem (by the fact that I'm reading the Intro to Bayes (finally), you can tell that I'm pretty early in the process). It's been quite thought provoking. I'm finally getting questions right more reliably, and wanted to share one of the visualization tools that helped me, at least. There are many "applets" strewn about, written in Java, that help one to visualize what the various probability components are doing. In the mammography example, at least, an the idea of a sieve popped into my head as a neat way to think about what the test is doing.
I'm planning to take fairly extensive notes (more about that in a soon-to-come post), but thought I'd share a little "re-write" of that problem with a graphic in case it's of any use, and also in case I've blundered in my understanding. Re-writing things in my own words helps make them my own -- I realize that this is probably going to come across as really, really, incredibly, simplistic, but it's where I'm at!
In case it's not intuitive... it's supposed to show 100% of women broken into their measured partitions of 1% with cancer and 99% without. Those respective groups are then "sifted," and the known reliability of the sieve for each of those groups is used to determine p(cancer|test+).
I'm open to aesthetic critiques as well -- I enjoy making things like this and knowing how intuitive it is to look at is helpful. It didn't turn out how my mind visualized it, but I figured it was decent enough for a start.
This was made using emacs org-mode, LaTeX, and TikZ.
Update: per some comments, I tried to make things more clear in a redo. The original picture shown is HERE.
----- Click for bigger picture or download -----
Yes, that's exactly right.
And although I'm having a hard time finding a news article to verify this, someone informed me that the official breast cancer screening recommendations in the US (or was it a particular state, perhaps California?) were recently modified such that it is now not recommended that women younger than 40 (50?) receive regular screening. The young woman who informed me of this change in policy was quite upset about it. It didn't make any sense to her. I tried to explain to her how it actually made good sense when you think about it in terms of base rates and expected values, but of course, it was no use.
But to return to the issue clinical implications, yes: if a woman belongs to a population where the result of a mammogram would not change our decision about whether a biopsy is necessary, then probably she shouldn't have the mammogram. I suspect that this line of reasoning would sound quite foreign to most practicing doctors.