Hello, everyone.
I'm relatively new here as a user rather than as a lurker, but even after trying to read ever tutorial on Bayes' Theorem I could get my hands on, I'm still not sure I understand it. So I was hoping that I could explain Bayesianism as I understand it, and some more experienced Bayesians could tell me where I'm going wrong (or maybe if I'm not going wrong and it's a confidence issue rather than an actual knowledge issue). If this doesn't interest you at all, then feel free to tap out now, because here we go!
Abstraction
Bayes' Theorem is an application of probability. Probability is an abstraction based on logic, which is in turn based on possible worlds. By this I mean that they are both maps that refer to multiple territories: whereas a map of Cincinatti (or a "map" of what my brother is like, for instance), abstractions are good for more than one thing. Trigonometry is a map of not just this triangle here, but of all triangles everywhere, to the extent that they are triangular. Because of this it is useful even for triangular objects that one has never encountered before, but only tells you about it partially (e.g. it won't tell you the lengths of the sides, because that wouldn't be part of the definition of a triangle; also, it only works at scales at which the object in question approximates a triangle (i.e. the "triangle" map is probably useful at macroscopic scales, but breaks down as you get smaller).
Logic and Possible Worlds
Logic is an attempt to construct a map that covers as much territory as possible, ideally all of it. Thus when people say that logic is true at all times, at all places, and with all things, they aren't really telling you about the territory, they're telling you about the purpose of logic (in the same way that the "triangle" map is ideally useful for triangles at all times, at all places).
One form of logic is Propositional Logic. In propositional logic, all the possible worlds are imagined as points. Each point is exactly one possible world: a logically-possible arrangement that gives a value to all the different variables in the universe. Ergo no two possible universes are exactly the same (though they will share elements).
These possible universes are then joined together in sets called "propositions". These "sets" are Venn diagrams, or what George Lakoff refers to as "container schemas"). Thus, for any given set, every possible universe is either inside or outside of it, with no middle ground (see "questions" below). Thus if the set I'm referring to is the proposition "The Snow is White", that set would include all possible universes in which the snow is white. The rules of propositional logic follow from the container schema.
Bayesian Probability
If propositional logic is about what's inside a set or outside of a set, probability is about the size of the sets themselves. Probability is a measurement of how many possible worlds are inside a set, and conditional probability is about the size of the intersections of sets.
Take the example of the dragon in your garage. To start with, there either is or isn't a dragon in your garage. Both sets of possible worlds have elements in them. But if we look in your garage and don't see a dragon, then that eliminates all the possibilities of there being a *visible* dragon in your garage, and thus eliminates those possible universes from the 'there is a dragon in your garage' set. In other words, the probability of that being true goes down. And because not seeing a dragon in your garage would be what you would expect if there in fact isn't a dragon in your garage, that set remains intact. Then if we look at the ratio of the remaining possible worlds, we see that the probability of the no-dragon-in-your-garage set has gone up, not because in absolute terms (because the set of all possible worlds is what we started with; there isn't any more!) but relative to the alternate hypothesis (in the same way that if the denominator of a fraction goes down, the size of the fraction goes up.)
This is what Bayes' Theorem is about: the use of process of elimination to eliminate *part* of the set of a proposition, thus providing evidence against it without it being a full refutation.
Naturally, this all takes place in ones mind: the world doesn't shift around you just because you've encountered new information. Probability is in this way subjective (it has to do with maps, not territories per se), but it's not arbitrary: as long as you accept that possible worlds/logic metaphor, it necessarily follows
Questions/trouble points that I'm not sure of:
*I keep seeing probability referred to as an estimation of how certain you are in a belief. And while I guess it could be argued that you should be certain of a belief relative to the number of possible worlds left or whatever, that doesn't necessarily follow. Does the above explanation differ from how other people use probability?
*Also, if probability is defined as an arbitrary estimation of how sure you are, why should those estimations follow the laws of probability? I've heard the Dutch book argument, so I get why there might be practical reasons for obeying them, but unless you accept a pragmatist epistemology, that doesn't provide reasons why your beliefs are more likely to be true if you follow them. (I've also heard of Cox's rules, but I haven't been able to find a copy. And if I understand right, they says that Bayes' theorem follows from Boolean logic, which is similar to what I've said above, yes?)
*Another question: above I used propositional logic, which is okay, but it's not exactly the creme de la creme of logics. I understand that fuzzy logics work better for a lot of things, and I'm familiar with predicate logics as well, but I'm not sure what the interaction of any of them is with probability or the use of it, although I know that technically probability doesn't have to be binary (sets just need to be exhaustive and mutually exclusive for the Kolmogorov axioms to work, right?). I don't know, maybe it's just something that I haven't learned yet, but the answer really is out there?
Those are the only questions that are coming to mind right now (if I think of any more, I can probably ask them in comments). So anyone? Am I doing something wrong? Or do I feel more confused than I really am?
First of all, let me thank you so much, MrMind, for your post. It was really helpful, and I greatly appreciate how much work you put into it!
Much obliged.
Question. I'm making my way through George Lakoff's works on metaphor and embodied thought; are familiar with the theory at all? (I know lukeprog did a blog post about them, but it's not nearly everything there is to know) Basically the theory is that our most basic understandings are linked to our direct sensory experience, and then we abstract away from that metaphorically in various fields, a very bottom-up approach. Whereas what you're saying is starting with symbols, which I think would be the reverse of what he's saying? Which probably means that it's a difference of perspective (it probably is), but as a starting point it gives the concepts less ballast for me. That said, I'm not entirely lost - I think I mentioned that I've studied symbolic logic, so I'll brave ahead!
As you can probably imagine, there are a myriad of logics and myriads of ontologies (often called models).
How does this connect to the map-territory distinction? Generally as I've understood it, logic is a form of map, but so too would be a model. Would a model be a map and logic be a map of a map? Am I getting that right?
This is something that has always confused me, the probability definition wars. Is there really something to argue about here? Maybe I'm missing something, but it seems like a "if a tree falls in the woods..." kind of question that should just be taboo'd. But when you taboo frequency-probability off from epistemic-probability, it's not immediately obvious why the same axioms should apply to both of them (which doesn't mean that they don't; thank you to everyone for pointing me to Cox's Theorems again. I know I've seen them before, but I think they're starting to click a little bit more on this pass-over). And Richard Carrier's new book said that they're actually the same thing, which is just confusing (that epistemic probability is the frequency at which beliefs with the same amount of evidence will be true/false, or something like that). (EDIT: Another possibility would be that both frequentist and Bayesian definitions of probability could both be "probability" and both conform to the axioms, but that would just make it more perplexing for people to argue about it)
Thanks for the terminology. I don't really understand what they are given so brief a description, but knowing the names at least spurs further research. Also, am I doing it right for the one ontology and one interpretation that I've stumbled across, regardless of the others?
Right, because in fuzzy logics the spectrum is the truth value (because being hot/cold, near/far, gay/straight, sexual/asexual, etc. is not an either/or), whereas with PTEL the spectrum is the level of certainty in a more staunch true/false dichotomy, right? I don't actually know fuzzy logic, I just know the premise of it.
The other question I forgot to ask in the first post was how Bayes' Theorem interacts with group identity not being a matter of necessary and sufficient conditions, or for other fuzzy concepts like I mentioned earlier (near/far, &c.). For this would you just pick a mostly-arbitrary concept boundary so that you have a binary truth value to work with?
Unfortunately no, but from your description it seems quite like the theory of the mind of General Semantics.
Not exactly, because in the end symbols are just unit of perceptions, all distinct from one another. But while Lakoff's theory probably aims at psychology, logic is a denotational and computational tool, so it doesn't rea... (read more)