Hi all, I've been working on some AI forecasting research and have prepared a draft report on timelines to transformative AI. I would love feedback from this community, so I've made the report viewable in a Google Drive folder here.
With that said, most of my focus so far has been on the high-level structure of the framework, so the particular quantitative estimates are very much in flux and many input parameters aren't pinned down well -- I wrote the bulk of this report before July and have received feedback since then that I haven't fully incorporated yet. I'd prefer if people didn't share it widely in a low-bandwidth way (e.g., just posting key graphics on Facebook or Twitter) since the conclusions don't reflect Open Phil's "institutional view" yet, and there may well be some errors in the report.
The report includes a quantitative model written in Python. Ought has worked with me to integrate their forecasting platform Elicit into the model so that you can see other people's forecasts for various parameters. If you have questions or feedback about the Elicit integration, feel free to reach out to elicit@ought.org.
Looking forward to hearing people's thoughts!
I'm not seeing the merit of the genome anchor. I see how it would make sense if humans didn't learn anything over the course of their lifetime. Then all the inference-time algorithmic complexity would come from the genome, and you would need your ML process to search over a space of models that can express that complexity. However, needless to say, humans do learn things over the course of their lifetime! I feel even more strongly about that than most, but I imagine we can all agree that the inference-time algorithmic complexity of an adult brain is not limited by what's in the genome, but rather also incorporates information from self-supervised learning etc.
The opposite perspective would say: the analogy isn't between the ML trained model and the genome, but rather between the ML learning algorithm and the genome on one level, and between the ML trained model and the synapses at the other level. So, something like ML parameter count = synapse count, and meanwhile the genome size would correspond to "how complicated is the architecture and learning algorithm?"—like, add up the algorithmic complexity of backprop plus dropout regularization plus BatchNorm plus data augmentation plus xavier initialization etc. etc. Or something like that.
I think the truth is somewhere in between, but a lot closer to the synapse-anchor side (that ignores instincts) than the genome-anchor side (that ignores learning), I think...
Sorry if I'm misunderstanding or missing something, or confused.
UPDATE: Or are we supposed to imagine an RNN wherein the genomic information corresponds to the weights, and the synapse information corresponds to the hidden state activations? If so, I didn't think you could design an RNN (of the type typically used today) where the hidden state activations have many orders of magnitude more information content than the weights. Usually there are more weights than hidden state activations, right?
UPDATE 2: See my reply to this comment.
Potentially worth noting that if you add the lifetime anchor to the genome anchor, you most likely get ~the genome anchor.