At the current AGI-12 conference, some designers have been proponents of keeping AGI's safe by bringing them up in human environments, providing them with interactions and feedback in a similar way to how we bring up human children. Obviously that approach would fail for a fully smart AGI with its own values - it would pretend to follow our values for as long as it needed, and then defect. However, some people have confidence if we started with a limited, dumb AGI, then we could successfully inculcate our values in this way (a more sophisticated position would be that though this method would likely fail, it's more likely to succeed than a top-down friendliness project!).
The major criticism of this approach is that it anthropomorphises the AGI - we have a theory of children's minds, constructed by evolution, culture, and our own child-rearing experience. And then we project this on the alien mind of the AGI, assuming that if the AGI presents behaviours similar to a well-behaved child, then it will become a moral AGI. The problem is that we don't know how alien the AGI's mind will be, and if our reinforcement is actually reinforcing the right thing. Specifically, we need to be able to find some way of distinguishing between:
- An AGI being trained to be friendly.
- An AGI being trained to lie and conceal.
- An AGI that will behave completely differently once out of the training/testing/trust-building environment.
- An AGI that forms the wrong categories and generalisations (what counts as "human" or "suffering", for instance), because it lacks human-shared implicit knowledge that was "too obvious" for us to even think of training it on.
Stuart -- Yeah, the line of theoretical research you suggest is worthwhile....
However, it's worth noting that I and the other OpenCog team members are pressed for time, and have a lot of concrete OpenCog work to do. It would seem none of us really feels like taking a lot of time, at this stage, to carefully formalize arguments about what the system is likely to do in various situations once it's finished. We're too consumed with trying to finish the system, which is a long and difficult task in itself...
I will try to find some time in the near term to sketch a couple example arguments of the type you request... but it won't be today...
As a very rough indication for the moment... note that OpenCog has explicit Goal Node objects in its AtomSpace knowledge store, and then one can look at the explicit probabilistic ImplicationLinks pointing to these GoalNodes from various combinations of contexts and actions. So one can actually look, in principle, at the probabilistic relations between (context, action) pairs and goals that OpenCog is using to choose actions.
Now, for a quite complex OpenCog system, it may be hard to understand what all these probabilistic relations mean. But for a young OpenCog doing simple things, it will be easier. So one would want to validate for a young OpenCog doing simple things, that the information in the system's AtomSpace is compatible with 1 rather than 2-4.... One would then want to validate that, as the system gets more mature and does more complex things, there is not a trend toward more of 2-4 and less of 1 ....
Interesting line of thinking indeed! ...