Imagine you had the following at your disposal:
- A Ph.D. in a biological science, with a fair amount of reading and wet-lab work under your belt on the topic of aging and longevity (but in hindsight, nothing that turned out to leverage any real mechanistic insights into aging).
- A M.S. in statistics. Sadly, the non-Bayesian kind for the most part, but along the way acquired the meta-skills necessary to read and understand most quantitative papers with life-science applications.
- Love of programming and data, the ability to learn most new computer languages in a couple of weeks, and at least 8 years spent hacking R code.
- Research access to large amounts of anonymized patient data.
- Optimistically, two decades remaining in which to make it all count.
Imagine that your goal were to slow or prevent biological aging...
- What would be the specific questions you would try to tackle first?
- What additional skills would you add to your toolkit?
- How would you allocate your limited time between the research questions in #1 and the acquisition of new skills in #2?
Thanks for your input.
Update
I thank everyone for their input and apologize for how long it has taken me to post an update.
I met with Aubrey de Grey and he recommended using the anonymized patient data to look for novel uses for already-prescribed drugs. He also suggested I do a comparison of existing longitudinal studies (e.g. Framingham) and the equivalent data elements from our data warehouse. I asked him that if he runs into any researchers with promising theories or methods but for a massive human dataset to test them on, to send them my way.
My original question was a bit to broad in retrospect: I should have focused more on how to best leverage the capabilities my project already has in place rather than a more general "what should I do with myself" kind of appeal. On the other hand, at the time I might have been less confident about the project's success than I am now. Though the conversation immediately went off into prospective experiments rather than analyzing existing data, there were some great ideas there that may yet become practical to implement.
At any rate, a lot of this has been overcome by events. In the last six months I realized that before we even get to the bifurcation point between longevity and other research areas, there are a crapload of technical, logistical, and organizational problems to solve. I no longer have any doubt that these real problems are worth solving, my team is well positioned to solve many of them, and the solutions will significantly accelerate research in many areas including longevity. We have institutional support, we have a credible revenue stream, and no shortage of promising directions to pursue. The limiting factor now is people-hours. So, we are recruiting.
Thanks again to everyone for their feedback.
In my view there is reasonable evidence for a trade-off between health and reproduction between species, but not within species. Am I wrong on this?
On eunuch lifespan, you are basically relying on three studies, each of which are historical, ie the Mental Health studies in the mid 20th century and the historical Korean eunuch study. I think there are big problems in interpreting these studies. For example, it's not like the eunuch lifespans in either sample is as long as men in wealthy countries, which makes things like infections and generally risky behavior a much stronger candidate for the mechanism, which wouldn't generalize to lifespan today. What am I wrong about here?
Again, why don't we see the effect in dogs? http://www.straightdope.com/columns/read/3068/does-castration-longer-life
Let me be clear that I want you to be right. It suggests a clear mechanism to increasing lifespan in men. I just don't think that there's very strong evidence for it.