You're about to flip a quantum coin a million times (these days you can even do it on the internet). What's your estimate of the K-complexity of the resulting string, conditional on everything else you've observed in your life so far? The Born rule, combined with the usual counting argument, implies you should say "about 1 million". The universal prior implies you should say "substantially less than 1 million". Which will it be?
EDIT: Wei Dai's comment explains why this post is wrong.
This is a tad confused.
A very simple measure on the binary strings is the uniform measure and so Solomonoff Induction will converge on it with high probability. This is easiest to think about from the Solomonoff-Levin definition of the universal prior where you take a mixture distribution of the measures according to their complexity -- thus a simple thing like a uniform prior gets a very high prior probability under the universal distribution. This is different from the sequence of bits itself being complex due to the bits being random. The confusing thing is when you define it the other way by sampling programs, and it's not at all obvious that things work out the same... indeed it's quite surprising I'd say.
I'd suggest reading the second chapter of "Machine Super Intelligence", I think it's clearer there than in my old master's thesis as I do more explaining and less proofs.
Can you explain why? What's the result saying the Solomonoff distribution "as a whole" often converges on uniform?