Today someone shared a picture on Facebook showing four d20 dies (d20 is a 20-sided die), supposedly all landed on 20. He was saying how cool it was that he and his friends were playing a tabletop role-playing game and they all got a 20 on their spot check at the same time.
My first reaction was "Huh, neat!"
My second reaction was "p = (1/20)^4 = 160,000. In Israel's small role-playing community this seems just very unlikely. This picture is probably a fake."
1st me: "Well, this just happened to be exactly 4 dies. If that happened to be 5 dies, 6 dies, etc ... we would still consider this as an exceptional event with low probability. We have to sum over all the probabilities for all plausible die numbers"
2nd me: "Sure, but every extra die reduces the probability by a factor of 1/20, so it seems likely that we can save ourselves the trouble of summing and just assume that 1/160,000 gives us a fair estimate."
1st me: "But what about if there were only 3 dies? 2 dies? What if they had all shown 1's instead of 20? What if they had shown 17, 18, 19, 20? What if we had encountered that picture on an international role-playing group, much larger than the Israeli one? Where do we draw the line? We need to find a way to estimate the probability of observing a picture on social media of something unlikely that is drawn from a huge set of unlikely possibilities"
At that point me no. 2 usually frowns and forgets about the matter until it emerges again, leaving it unresolved.
So I am now seeking the community's wisdom; let the elders speak. How do you estimate the likelihood of occurrences such as this? Can this problem be easily resolved somehow?
But how can I apply this sort of logic to the problems I've described above? It still seems to me like I need in theory to sum over all of the probabilities in some set A that contains all these improbable events but I just don't understand how to even properly define A, as its boundaries seem fuzzy and various thing "kinda fit" or "doesn't quite fit, but maybe?" instead of plain true and false.