We do ten experiments. A scientist observes the results, constructs a theory consistent with them, and uses it to predict the results of the next ten. We do them and the results fit his predictions. A second scientist now constructs a theory consistent with the results of all twenty experiments.
The two theories give different predictions for the next experiment. Which do we believe? Why?
One of the commenters links to Overcoming Bias, but as of 11PM on Sep 28th, David's blog's time, no one has given the exact answer that I would have given. It's interesting that a question so basic has received so many answers.
These theories are evidence about true distribution of data, so I construct a new theory based on them. I then could predict the next data point using my new theory, and if I have to play this game go back and choose one of the original theories that gives the same prediction, based only on prediction about this particular next data point, independently on whether selected theory as a whole is deemed better.
Having more data is strictly better. But I could expect that there is a good chance that a particular scientist will make an error (worse than me now, judging his result, since he himself could think about all of this and, say, construct a theory from first 11 data points and verify the absence of this systematic error using the rest, or use a reliable methodology). Success of the first theory gives evidence for it, which depending on my priors can significantly overweight expected improvement from more data points coming through imperfect procedure of converting into a theory.