We do ten experiments. A scientist observes the results, constructs a theory consistent with them, and uses it to predict the results of the next ten. We do them and the results fit his predictions. A second scientist now constructs a theory consistent with the results of all twenty experiments.
The two theories give different predictions for the next experiment. Which do we believe? Why?
One of the commenters links to Overcoming Bias, but as of 11PM on Sep 28th, David's blog's time, no one has given the exact answer that I would have given. It's interesting that a question so basic has received so many answers.
There are an infinite number of models that can predict 10 variables, or 20 for that matter. The only probable way for scientist A to predict a model out of the infinite possible ones is to bring prior knowledge to the table about the nature of that model and the data. This is also true for the second scientist, but only slightly less so.
Therefore, scientist A has demonstrated a higher probability of having valuable prior knowledge.
I don't think there is much more to this than that. If the two scientists have equal knowledge there is no reason the second model need be more complicated than the first since the first fully described the extra revealed data in the second.
If it was the same scientist with both sets of data then you would pick the second model.