For background, see here.
In a comment on the original Pascal's mugging post, Nick Tarleton writes:
[Y]ou could replace "kill 3^^^^3 people" with "create 3^^^^3 units of disutility according to your utility function". (I respectfully suggest that we all start using this form of the problem.)
Michael Vassar has suggested that we should consider any number of identical lives to have the same utility as one life. That could be a solution, as it's impossible to create 3^^^^3 distinct humans. But, this also is irrelevant to the create-3^^^^3-disutility-units form.
Coming across this again recently, it occurred to me that there might be a way to generalize Vassar's suggestion in such a way as to deal with Tarleton's more abstract formulation of the problem. I'm curious about the extent to which folks have thought about this. (Looking further through the comments on the original post, I found essentially the same idea in a comment by g, but it wasn't discussed further.)
The idea is that the Kolmogorov complexity of "3^^^^3 units of disutility" should be much higher than the Kolmogorov complexity of the number 3^^^^3. That is, the utility function should grow only according to the complexity of the scenario being evaluated, and not (say) linearly in the number of people involved. Furthermore, the domain of the utility function should consist of low-level descriptions of the state of the world, which won't refer directly to words uttered by muggers, in such a way that a mere discussion of "3^^^^3 units of disutility" by a mugger will not typically be (anywhere near) enough evidence to promote an actual "3^^^^3-disutilon" hypothesis to attention.
This seems to imply that the intuition responsible for the problem is a kind of fake simplicity, ignoring the complexity of value (negative value in this case). A confusion of levels also appears implicated (talking about utility does not itself significantly affect utility; you don't suddenly make 3^^^^3-disutilon scenarios probable by talking about "3^^^^3 disutilons").
What do folks think of this? Any obvious problems?
Without invoking complexity, one can say that an agent is immune to this form of Pascal's mugging if, for fixed I, the quantity P(x amount of utility | I) goes to zero as x grows.
If the agent's utility function is such that "x amount of utility" entails "f(x) amount of complexity," f(x) --> infinity, then this will hold for priors that are sensitive to complexity.