This puzzled me. I'm pretty sure it's one of those unsolvable questions, but I'd want to know if it's not.
Two members of the species Homo Economus, A and B, live next to each other. A wants to buy an easement (a right to cross B's property, without which he cannot bring anything onto his lot) from B so that he can develop his property. B, under the law, has an absolute right to exclude A, meaning that nothing happens unless B agrees to it. The cost to B of granting this easement is $10 - it's over a fairly remote part of his land and he's not using it for anything else. A values the easement at $500,000, because he's got a sweet spot to build his dream house, if only he could construction equipment and whatnot to it. A and B know each others costs and values. They are "rational" and purely self-interested and bargaining costs zero. What's the outcome? I'm guessing it's "Between $5 and $500k," or "There is no deal unless one can credibly commit to being irrational." But I'm really not sure.
This could be asked as "In a bilateral monopoly situation where the seller's reservation price is $5 and the buyer's is $500,000, what is the predicted outcome?" But I figured the concrete example might make it more concrete.
Now that I've written this, I'm tempted to develop a "True price fallacy" and its implications for utilitarian measurement. But that's a separate matter entirely.
This is essentially an ultimatum game (if we focus on the interesting bits). There is no theory that reliably helps with the process of picking a fair price, and the fair price depends on many factors which you didn't specify, including the details of how players' minds work, and what each player believes about the other. This makes intuition the only method that can take into account all the varieties of potentially relevant information, although there might be some explicit algorithms that show better performance in practice, especially if the other player doesn't know what algorithm you use.
There are some ideas from game theory that suggest certain algorithms for picking fair price, but their outcomes are mostly the product of privileging those algorithms as Schelling points for reaching agreement and not of clear a priori considerations for which price should be chosen. If players' brains are completely rotten by CDT thinking, they will additionally insist that A should accept whatever B is demanding, and conversely, depending on who gets the last say.
This is using "rationality" is a wrong sense. The word should refer to whatever it is they should do.
How is this an ultimatum game? There is no limitation in the problem of how long A and B can take to negotiate over the matter or what form that negotiation may take. Adding such limitations is not focussing on the interesting bits, it is focussing on a different problem.