Suppose you have a property Q which certain objects may or may not have. You've seen many of these objects; you know the prior probability P(Q) that an object has this property.
You have 2 independent measurements of object O, which each assign a probability that Q(O) (O has property Q). Call these two independent probabilities A and B.
What is P(Q(O) | A, B, P(Q))?
To put it another way, expert A has opinion O(A) = A, which asserts P(Q(O)) = A = .7, and expert B says P(Q(O)) = B = .8, and the prior P(Q) = .4, so what is P(Q(O))? The correlation between the opinions of the experts is unknown, but probably small. (They aren't human experts.) I face this problem all the time at work.
You can see that the problem isn't solvable without the prior P(Q), because if the prior P(Q) = .9, then two experts assigning P(Q(O)) < .9 should result in a probability lower than the lowest opinion of those experts. But if P(Q) = .1, then the same estimates by the two experts should result in a probability higher than either of their estimates. But is it solvable or at least well-defined even with the prior?
The experts both know the prior, so if you just had expert A saying P(Q(O)) = .7, the answer must be .7 . Expert B's opinion B must revise the probability upwards if B > P(Q), and downwards if B < P(Q).
When expert A says O(A) = A, she probably means, "If I consider all the n objects I've seen that looked like this one, nA of them had property Q."
One approach is to add up the bits of information each expert gives, with positive bits for indications that Q(O) and negative bits that not(Q(O)).
I think I misunderstand the question, or I don't get the assumptions, or I've gone terribly wrong.
Let me see if I've got the problem right to begin with. (I might not.)
40% of baseball players hit over 10 home runs a season. (I am making this up.)
Joe is a baseball player.
Baseball projector Mayne says Joe has a 70% chance of hitting more than 10 home runs next season. Baseball projector Szymborski says Joe has an 80% chance of hitting more than10 home runs next season. Both Mayne and Szymborski are aware of the usual rate of baseball players hitting more than 10 home runs.
Is this the problem?
Because if it is, the use of the prior is wrong. If the experts know the prior, and we believe the experts, the prior's irrelevant - our odds are 75%.
There are a lot of these situations in which regression to the mean, use of averages in determinations, and other factors are needed. But in this situation, if we assume reasonable experts who are aware of the general rules, and we value those experts' opinions highly enough, we should just ignore the prior - the experts have already factored that in. When Nate Silver gives you the odds that Barack Obama wins the election, you shouldn't be factoring in P(Incumbent wins) or anything else - the cake is prebaked with that information.
Since this rejects a strong claim in the post, it's possible I'm very seriously misreading the problem. Caveat emptor.
You're reading it correctly, but I disagree with your conclusion. If Mayne says p=.7, and Szymborski says p=.8, and their estimates are independent - remember, my classifiers are not human experts, they are not correlated - then the final result must be greater than .8. You already thought p=.8 after hearing Szymborski. Mayne's additional opinion says Joe is more-likely than average to hit more than 10 home runs, and is based on completely different information than Szymborski's, so it should make Joe's chances increase, not decrease.