Less Wrong is a community blog devoted to refining the art of human rationality. Please visit our About page for more information.

Sniffnoy comments on Should correlation coefficients be expressed as angles? - Less Wrong Discussion

43 Post author: Sniffnoy 28 November 2012 12:05AM

You are viewing a comment permalink. View the original post to see all comments and the full post content.

Comments (24)

You are viewing a single comment's thread. Show more comments above.

Comment author: Sniffnoy 28 November 2012 01:33:11AM *  9 points [-]

I don't think correlation coefficient is the cosine of the angle between them. In this picture you can see that the middle row has 1 or -1 and yet different angles.

Sorry, I guess I was unclear on what I meant. I didn't mean the angles pictured in that graph. Rather I meant what was described in the footnote -- consider covariance as an inner product and consider the angles you get this way.

In other words, I'm not claiming any sort of theorem; I'm not claiming that the correlation coefficient in fact tells you some other information that isn't obviously already in there. I've defined the angles here such that "the correlation coefficient is the cosine of the angle between them" is a tautology. I'm just suggesting that this geometric viewpoint might help with the intuition.

Comment author: iDante 28 November 2012 02:41:49AM *  4 points [-]

Whoa. I didn't have this geometric point of view down so I didn't understand at first what you meant, but now that I've thought about it for a few minutes it makes sense.

The prevalent intuitive meaning of correlation coefficient (at least the one I learned in the watered-down statistics-for-physics-students class) is "a measure of how well two variables correlate. 1 is well, 0 is not at all, -1 is backwards correlation." Hence, the first thing I thought of was that image. Many people who need to use this coefficient won't have taken linear algebra and it'll be a complication for them to learn that it's "the inner product of two random variablesies, so 0 means lots of correlation, pi means the opposite direction, and pi/2 means no correlation." Or maybe you use degrees, idk.

I like it, thanks for making this thread :D