The fund observes how well the predictions do, and increases the stake of those users whose predictions did well, and burns part of the stake of those who performed badly. Then it increases the stake of those who did well and burns part of the stake of those who performed badly.
Is there a difference between these two things?
The importance of unknown unknowns. They would presumably make the prior wider, and could also be incorporated from an outside-view perspective.
A meteor falling out of the sky used to be an unknown factor. It doesn't happen often, and might be underestimated. For that matter, pandemics - you could argue this is "the outside view's moment to shine" but who held this outside view? (That was rhetorical, but since this is a forecasting newsletter - any examples of centenarians response or perspective to/on SARS or COVID?)
No, the first part is a typo, thanks.
I'm not sure I understand what "this" refer to in that sentence
Highlights
Index
Sign up here or browse past newsletters here.
Prediction Markets & Forecasting Platforms
Numerai is a distributed, blockchain-based hedge fund. Users can either predict on free, but obfuscated data, or use their own data and predict on real world companies. After the users stake cryptocurrency on their predictions, Numerai buys or sells stocks in proportion to each prediction's stake.and then stake cryptocurrency on their predictions. The fund observes how well the predictions do. Then it increases the stake of those who did well and burns part of the stake of those who performed badly. Numerai’s users currently have around $12.5 million staked.
CSET's Founding Director Jason Matheny is now a ¿senior? official in the Biden administration. In his past life, he did some pioneering work on cultured meat, then was a Program Manager of IARPA's Aggregative Contingent Estimation (ACE) program (of Good Judgment fame), before becoming director of IARPA. In recent times, he founded the Center for Security and Emerging Technologies (CSET.)
CSET Foretell is launching a Pro Forecaster Program in April 2021, which means it will start paying its forecasters. They are offering to pay $200/month (each) to 50 selected forecasters. The total payout, which comes to $120k yearly, competes with Replication Markets as one of the largest forecaster reward budgets.
Using early data, CSET Foretell finds that its crowd outperforms historical projections.
Personally, I ended up on place #5 out of 646 on the first season’s leaderboard, and my team, Samotsvety Forecasting, comprised out of Eli Lifland, Misha Yagudin and myself, completely outpaced all other teams:
Omen v2 launches. Crucially, they are moving to a subchain. Trades will be cheaper, once they are made inside the subchain, yet this comes at a cost—the process of moving currency to a subchain is cumbersome. They have added more questions, but the platform still remains small.
Here is a short explanation of how Catnip works, and what the differences between Catnip and Augur are.
Hypermind has a new forecasting tournament—on the state of AI in 2030—with relatively low rewards of $3000.
I’ve continued to improve Metaforecast:
While sniffing the requests from WilliamHill and Ladbrokes, I found out about OpenBet. OpenBet is a provider of software infrastructure for many major European betting houses: WilliamHill, Betfair, PaddyPower, Ladbrokes, etc. They package that software infrastructure with extremely addictive games. OpenBet has a “Corporate Social Responsibility” page and various responsible gaming accreditations. But despite these accrediations, the platform's business model appears to rely on making the bettors become addicted: As explained on the—sinisterly named —“omni-channel” page "multi-channel customers have proven to be 38% more profitable than single channel customers”. It’s unclear to me whether the fact that they manage the infrastructure for so many European betting houses is problematic with regards to the EU’s antitrust policy; I’d give it a 10 to 30% chance.
That modus operandi stands in contrast to current cryptocurrency-based prediction markets, which have much cleaner interfaces and don’t appear to indulge in predatory profit-chasing, e.g., compare Omen's frontend with that of Betfair.
In a sad turn of affairs, Polkamarkets, a new prediction market still under development, might also be aiming to capture profit from the addictive gamification aspect of betting within the crypto-prediction market ecosystem. Nonetheless, Polkamarkets hasn’t launched yet and, on the positive side, it promises higher frequency markets and faster resolution times, so it’s still too soon to judge whether it will be a net positive project.
Metaculus
Metaculus is hiring.
There has been some discussion about, and criticism of, the Metaculus scoring rule. A Metaculus co-founder answers with A Primer on the Metaculus Scoring Rule.
MetaculusExtras has added new features, like the daily and cumulative number of predictions on the site or the number of points per question per user. SimonM, of MetaculusExtras fame, also extracts the top comments (i.e. the most upvoted and slightly curated) made in March on Metaculus:
In the News
FiveThirtyEight on why Republicans outperformed polls again. Their two hypotheses are that Republicans are losing trust in (strongly left-leaning) institutions, and that college-graduated Republicans might worry about being ostracized for their political views. However, the connection between that and differential nonresponse seems unclear.
Also from FiveThirtyEight: Ignore What Potential 2024 Presidential Candidates Say. Watch What They Do. I found Senator Obama's flat out, no-nonsense denial that he would run for president in 2008 particularly striking.
Coles shows off a powerful forecasting engine. I was especially surprised by the following paragraph:
I looked into how hard the insurance industry has been hit by COVID. On the one hand, payouts spiked; on the other hand, insurance companies also got more clients. There isn't much hard data, but overall the first effect seems to dominate around the world. COVID Insurance Coverage One Year Later describes the situation on the US front, explains that policies were ambiguously written and that courts are still deciding whether COVID-19 should be classified as "physical damage" or a "physical alteration".
Technology for Forecasting Fish Outbreaks keeps improving. I mention this from time to time, and I may have seen the idea somewhere else, but subsidizing such technology could be a cost-effective intervention to improve fish welfare.
The Association of Bay Area Governments has released a series of demographic, economic, and land-use projections for 2040. The projections are presented on a sleek webpage as well as in a more comprehensive pdf. The expected error of these projections is difficult to estimate.
Recent Blog Posts
Astral Codex Ten considers Trapped Priors As A Basic Problem Of Rationality. “The raw evidence (the Rottweiler sat calmly wagging its tail) looks promising. But the context is a very strong prior that dogs are terrifying. If the prior is strong enough, it overwhelms the real experience. Result: the Rottweiler was terrifying. Any update you make on the situation will be in favor of dogs being terrifying”
Discussion on Kelly Betting: Kelly isn't (just) about logarithmic utility, Kelly is (just) about logarithmic utility, and A non-logarithmic argument for Kelly (and this comment which summarizes the last post.)
David Manheim tries to apply accounting principles to forecasting on Resolutions to the Challenge of Resolving Forecasts and Systematizing Epistemics: Principles for Resolving Forecasts.
deluks917, of previous "Bet on Biden" fame, has two pieces on the Efficient Market Hypothesis (EMH): The EMH is False - Specific Strong Evidence and Violating the EMH - Prediction Markets
Why sigmoids are so hard to predict makes an argument in terms of the differential equation which produces sigmoids. “The core reason why the turning point and the maximums are so hard to predict from early data [is that] we're not only trying to figure out the parameters of a logistic curve, but the functional form of the dampening function - a dampening function whose effect is insignificant in the early data.”
Cafebedouin, a top Good Judgment Open forecaster who recently ascended into superforecastdom, reviews his predictions for 2020.
Niplav looks at Range and Forecasting Accuracy of questions on PredictionBook and Metaculus. Its results are an instance of Simpson's paradox:
Star Spangled Gamblers is a political betting blog which mostly covers questions on PredictIt. Here is a profile piece on whether California's Governor Gavin Newsom will be recalled. The author seems to think that he won't, but that there are many events which would make irrational gamblers push the price higher than it currently is. This thesis is presented together with a solid mechanistic understanding of how California recall elections work and have turned out in the past.
Hard to Categorize
Forecasting: Principles and Practice is a free online textbook which covers time series forecasting using R.
Orbit is "a Python package for Bayesian time series modeling and inference" developed by Uber. The documentation looks reasonably interesting.
Long Content
OpenPhilanthropy released a report on outside view perspectives on the likelihood of AGI. The report “ignores some of our evidence about when AGI will happen. It restricts itself to outside view considerations - those relating to how long analogous developments have taken in the past. It ignores evidence about how good current AI systems are compared to AGI, and how quickly the field of AI is progressing. It does not attempt to give all-things-considered probabilities.”
OpenPhilanthropy asked various academics for feedback. Among other comments, they highlighted the following:
Understanding "empirical Bayes estimation" (using baseball statistics): Given two baseball batters, one which has hit 4 out of 10 balls, and another one which has hit 300 out of 1000 balls, which one is, in expectation, better?
In a prediction market in which participants Kelly bet, the market price reacts exactly as if updating according to Bayes' Law. See an introductory blog post, and this paper with a proof.
From The risks of communicating extreme climate forecasts:
Long-Term Capital Management is a failed hedge fund. In the aftermath of its failure, its manager set up another hedge fund, which also failed in the 2008 crisis, and then a third one, whose current existence is uncertain.
A Semitechnical Introductory Dialogue on Solomonoff Induction presents, in dialogue form, an idealized way of “how to do good epistemology” if one had infinite computing power.
Nature study which gives electric shocks to participants when they predict incorrectly finds that "irreducible subjective uncertainty" is very predictive of stress.
Note to the future: All links are added automatically to the Internet Archive. In case of link rot, go there and input the dead link.
Source: Kitsch article about how to improve forecasting.