Your distinction between "outer alignment" and "inner alignment" is both ahistorical and unYudkowskian. It was invented years after this post was written, by someone who wasn't me; and though I've sometimes used the terms in occasions where they seem to fit unambiguously, it's not something I see as a clear ontological division, especially if you're talking about questions like "If we own the following kind of blackbox, would alignment get any easier?" which on my view breaks that ontology. So I strongly reject your frame that this post was "clearly portraying an outer alignment problem" and can be criticized on those grounds by you; that is anachronistic.
You are now dragging in a very large number of further inferences about "what I meant", and other implications that you think this post has, which are about Christiano-style proposals that were developed years after this post. I have disagreements with those, many disagreements. But it is definitely not what this post is about, one way or another, because this post predates Christiano being on the scene.
What this post is trying to illustrate is that if you try putting crisp physical predicates on reality, that won't work to say what you want. This point is true! If you then want to take in a bunch of anachronistic ideas developed later, and claim (wrongly imo) that this renders irrelevant the simple truth of what this post actually literally says, that would be a separate conversation. But if you're doing that, please distinguish the truth of what this post actually says versus how you think these other later clever ideas evade or bypass that truth.
The post is about the complexity of what needs to be gotten inside the AI. If you had a perfect blackbox that exactly evaluated the thing-that-needs-to-be-inside-the-AI, this could possibly simplify some particular approaches to alignment, that would still in fact be too hard because nobody has a way of getting an AI to point at anything. But it would not change the complexity of what needs to be moved inside the AI, which is the narrow point that this post is about; and if you think that some larger thing is not correct, you should not confuse that with saying that the narrow point this post is about, is incorrect.
I claim that having such a function would simplify the AI alignment problem by reducing it from the hard problem of getting an AI to care about something complex (human value) to the easier problem of getting the AI to care about that particular function (which is simple, as the function can be hooked up to the AI directly).
One cannot hook up a function to an AI directly; it has to be physically instantiated somehow. For example, the function could be a human pressing a button; and then, any experimentation on the AI's part to determine what "really" controls the button, will find that administering drugs to the human, or building a robot to seize control of the reward button, is "really" (from the AI's perspective) the true meaning of the reward button after all! Perhaps you do not have this exact scenario in mind. So would you care to spell out what clever methodology you think invalidates what you take to be the larger point of this post -- though of course it has no bearing on the actual point that this post makes?
Wish there was a system where people could pay money to bid up what they believed were the "top arguments" that they wanted me to respond to. Possibly a system where I collect the money for writing a diligent response (albeit note that in this case I'd weigh the time-cost of responding as well as the bid for a response); but even aside from that, some way of canonizing what "people who care enough to spend money on that" think are the Super Best Arguments That I Should Definitely Respond To. As it stands, whatever I respond to, there's somebody else to say that it wasn't the real argument, and this mainly incentivizes me to sigh and go on responding to whatever I happen to care about more.
(I also wish this system had been in place 24 years ago so you could scroll back and check out the wacky shit that used to be on that system earlier, but too late now.)
I note that I haven't said out loud, and should say out loud, that I endorse this history. Not every single line of it (see my other comment on why I reject verificationism) but on the whole, this is well-informed and well-applied.
If you had to put a rough number on how likely it is that a misaligned superintelligence would primarily value "small molecular squiggles" versus other types of misaligned goals, would it be more like 1000:1 or 1:1 or 1000:1 or something else?
Value them primarily? Uhhh... maybe 1:3 against? I admit I have never actually pondered this question before today; but 1 in 4 uncontrolled superintelligences spending most of their resources on tiny squiggles doesn't sound off by, like, more than 1-2 orders of magnitude in either direction.
Clocks are not actually very complicated; how plausible is it on your model that these goals are as complicated as, say, a typical human's preferences about how human civilization is structured?
It wouldn't shock me if their goals end up far more complicated than human ones; the most obvious pathway for it is (a) gradient descent turning out to produce internal preferences much faster than natural selection + biological reinforcement learning and (b) some significant fraction of those preferences being retained under reflection. (Where (b) strikes me as way less probable than (a), but not wholly forbidden.) The second most obvious pathway is if a bunch of weird detailed noise appears in the first version of the reflective process and then freezes.
Not obviously stupid on a very quick skim. I will have to actually read it to figure out where it's stupid.
(I rarely give any review this positive on a first skim. Congrats.)
By "dumb player" I did not mean as dumb as a human player. I meant "too dumb to compute the pseudorandom numbers, but not too dumb to simulate other players faithfully apart from that". I did not realize we were talking about humans at all. This jumps out more to me as a potential source of misunderstanding than it did 15 years ago, and for that I apologize.
I don't always remember my previous positions all that well, but I doubt I would have said at any point that sufficiently advanced LDT agents are friendly to each other, rather than that they coordinate well with each other (and not so with us)?
Actually, to slightly amend that: The part where squiggles are small is a more than randomly likely part of the prediction, but not a load-bearing part of downstream predictions or the policy argument. Most of the time we don't needlessly build our own paperclips to be the size of skyscrapers; even when having fun, we try to do the fun without vastly more resources, than are necessary to that amount of fun, because then we'll have needlessly used up all our resources and not get to have more fun. We buy cookies that cost a dollar instead of a hundred thousand dollars. A very wide variety of utility functions you could run over the outside universe will have optima around making lots of small things because each thing scores one point, and so to score as many points as possible, each thing is as small as it can be as still count as a thing. Nothing downstream depends on this part coming true and there are many ways for it to come false; but the part where the squiggles are small and molecular is an obvious kind of guess. "Great giant squiggles of nickel the size of a solar system would be no more valuable, even from a very embracing and cosmopolitan perspective on value" is the loadbearing part.
Well-checked.