Like I said below, write out the actual random variables you use as a Bayesian: they have identical distributions if the mean of your green:blue prior is 30 to 30.

There is literally no sane justification for the "paradox" other than updating on the problem statement to have an unbalanced posterior estimate of green vs. blue.

If I decide whether you win or lose by drawing a random number from 1 to 60 in a symmetric fashion, then rolling a 60-sided die and comparing the result to the number I drew, this is

the same random variableas a single fair coinflip. Unless you are playing multiple times (in which case you'll experience higher variance from the correlation) or you have a reason to suspect an asymmetric probability distribution of green vs. blue, the two gambles will have the exact same effect in your utility function.The above paragraph is mathematically rigorous. You should not disagree unless you find a mathematical error.

And yet again I am reminded why I do not frequent this supposedly rational forum more. Rationality swishes by over most peoples head here, except for a few really smart ones. You people make it too complicated. You write too much. Lots of these supposedly deep intellectual problems have quite simple answers, such as this Ellsberg paradox. You just have to look and think a little outside their boxes to solve them, or see that they are unsolvable, or that they are wrong questions.

I will yet again go away, to solve more useful and interesting problems on my own.

Oh, and Orthonormal, here is my correct final answer to you: You do not understand me, and this is your fault.