Aaron_Scher

Wiki Contributions

Comments

I appreciate this post. Emphasizing a couple things and providing some other commentary/questions on the paper (as there doesn't seem to be a better top level post for it) (I have not read paper deeply and could be missing things):

  • I find the Twitter vote brigading to be annoying and slightly bad for collective epistemics. I do not think this paper was particularly good, and it did not warrant the attention it got. (The main flaws IMO are a lack of (empirical) comparison to other methods — except a brief interlude in the appendix; and lack of any benchmarking — for example testing if clamping sycophancy features affects performance on sycophancy benchmarks)
  • At an object level, one concerning-to-me result is that there doesn't appear to be a clean gradient in the presence of a feature over the range of activation values. You might hope that if you take the AI risk feature[1], and look at dataset examples that span its activation values (as the tool does), you would see highly activating text be very related to AI risk and low activating text be only slightly related. I think that pattern is weak — there are at least some low-activation examples that are highly related to AI risk, such as '..."It's what they're programmed to do." "Destroy all technology other than their own"' (cherrypicked by me). This is related to sensitivity, which the paper mentions is difficult to study in this context (before mentioning one cherry-picked result). I care about this because: one way to use SAEs for safety is as a classifier for malicious behavior (be checking if model activations correspond to dangerous features); this would really benefit from having a nice smooth relationship between feature activation magnitude and actual feature presence, and it pretty much needs to have high sensitivity. Given the existence of highly-feature-related samples in the bottom activation interval, I feel fairly worried that sensitivity is poor, and that it will be hard to do magnitude-based thresholds — it pretty much looks like 0 is the reasonable threshold given these results. 
  1. ^

    In the paper this is labeled with "The concept of an advanced AI system causing unintended harm or becoming uncontrollable and posing an existential threat to humanity"

I don’t have strong takes, but you asked for feedback.

It seems nontrivial that the “value proposition” of collaborating with this brain-chunk is actually net positive. E.g., if it involved giving 10% of the universe to humanity, that’s a big deal. Though I can definitely imagine where taking such a trade is good.

It would likely help to devise more clarity about why the brain-chunk provides value. Is it because humanity has managed to coordinate to get a vast majority of high performance compute under the control of a single entity and access to compute is what’s being offered? If we’re at that point, I think we probably have many better options (e.g., long term moratorium and coordinated safety projects).

Another load bearing part seems to be the brain-chunk causing the misaligned AI to become or remain somewhat humanity friendly. What are the mechanisms here? The most obvious thing to me is that AI submits jobs to the cluster along with a thorough explanation of why they will create a safe successor system, and then the brain-chunk is able to assess these plans and act as a filter, only allowing safer-seeming training runs to happen. But if we’re able to accurately assess the viability of safe AGI design plans that are proposed by a human+ level (and potentially malign) AGIs, great, we probably don’t need this complicated scheme where we let a potentially malign undergo rsi.

Again, no strong feelings, but the above do seem like weaknesses. I might have understood things you were saying. I do wish there was more work thinking about standard trades with misaligned AIs, but perhaps this is going on privately.

I appreciate this comment, especially #3, for voicing some of why this post hasn't clicked for me. 

The interesting hypotheses/questions seem to rarely have strong evidence. But I guess this is partially a selection effect where questions become less interesting by virtue of me being able to get strong evidence about them, no use dwelling on the things I'm highly confident about. Some example hypotheses that I would like to get evidence about but which seem unlikely to have strong evidence: Sam Altman is a highly deceptive individual, far more deceptive than the average startup CEO. I work better when taking X prescribed medication. I would more positively influence the far future if I worked on field building rather than technical research. 

Just chiming in that I appreciate this post, and my independent impressions of reading the FSF align with Zach's conclusions: weak and unambitious

A couple additional notes:

The thresholds feel high — 6/7 of the CCLs feel like the capabilities would be a Really Big Deal in prosaic terms, and ~4 feel like a big deal for x-risk. But you can't say whether the thresholds are "too high" without corresponding safety mitigations, which this document doesn't have. (Zach)

These also seemed pretty high to me, which is concerning given that they are "Level 1". This doesn't necessarily imply but it does hint that there won't be substantial mitigations — above the current level — required until those capability levels. My guess is that current jailbreak prevention is insufficient to mitigate substantial risk from models that are a little under the level 1 capabilities for e.g., bio. 

GDP gets props for specifically indicating ML R&D + "hyperbolic growth in AI capabilities" as a source of risk. 

Given the lack of commitments, it's also somewhat unclear what scope to expect this framework to eventually apply to. GDM is a large org with, presumably, multiple significant general AI capabilities projects. Especially given that "deployment" refers to external deployment, it seems like there's going to be substantial work to ensuring that all the internal AI development projects proceed safely. e.g., when/if there are ≥3 major teams and dozens of research projects working on fine-tuning highly capable models (e.g., base model just below level 1), compliance may be quite difficult. But this all depends on what the actual commitments and mechanisms turn out to be. This comes to mind after this event a few weeks ago, where it looks like a team at Microsoft released a model without following all internal guidelines, and then tried to unrelease it (but I could be confused). 

Sam Altman and OpenAI have both said they are aiming for incremental releases/deployment for the primary purpose of allowing society to prepare and adapt. Opposed to, say, dropping large capabilities jumps out of the blue which surprise people. 

I think "They believe incremental release is safer because it promotes societal preparation" should certainly be in the hypothesis space for the reasons behind these actions, along with scaling slowing and frog-boiling. My guess is that it is more likely than both of those reasons (they have stated it as their reasoning multiple times; I don't think scaling is hitting a wall).

This might be a dumb question(s), I'm struggling to focus today and my linear algebra is rusty. 

  1. Is the observation that 'you can do feature ablation via weight orthogonalization' a new one? 
  2. It seems to me like this (feature ablation via weight orthogonalization) is a pretty powerful tool which could be applied to any linearly represented feature. It could be useful for modulating those features, and as such is another way to do ablations to validate a feature (part of the 'how do we know we're not fooling ourselves about our results' toolkit). Does this seem right? Or does it not actually add much? 

Thinking about AI training runs scaling to the $100b/1T range. It seems really hard to do this as an independent AGI company (not owned by tech giants, governments, etc.). It seems difficult to raise that much money, especially if you're not bringing in substantial revenue or it's not predicted that you'll be making a bunch of money in the near future. 

What happens to OpenAI if GPT-5 or the ~5b training run isn't much better than GPT-4? Who would be willing to invest the money to continue? It seems like OpenAI either dissolves or gets acquired. Were Anthropic founders pricing in that they're likely not going to be independent by the time they hit AGI — does this still justify the existence of a separate safety-oriented org?  

This is not a new idea, but I feel like I'm just now taking some of it seriously. Here's Dario talking about it recently

I basically do agree with you. I think it’s the intellectually honest thing to say that building the big, large scale models, the core foundation model engineering, it is getting more and more expensive. And anyone who wants to build one is going to need to find some way to finance it. And you’ve named most of the ways, right? You can be a large company. You can have some kind of partnership of various kinds with a large company. Or governments would be the other source.

Now, maybe the corporate partnerships can be structured so that AGI companies are still largely independent but, idk man, the more money invested the harder that seems to make happen. Insofar as I'm allocating probability mass between 'acquired by big tech company', 'partnership with big tech company', 'government partnership', and 'government control', acquired by big tech seems most likely, but predicting the future is hard. 

Um, looking at the scaling curves and seeing diminishing returns? I think this pattern is very clear for metrics like general text prediction (cross-entropy loss on large texts), less clear for standard capability benchmarks, and to-be-determined for complex tasks which may be economically valuable. 

To be clear, I'm not saying that a $100m model will be very close to a $1b model. I'm saying that the trends indicate they will be much closer than you would think if you only thought about how big a 10x difference in training compute is, without being aware of the empirical trends of diminishing returns. The empirical trends indicate this will be a relatively small difference, but we don't have nearly enough data for economically valuable tasks / complex tasks to be confident about this. 

Yeah, these developments benefit close-sourced actors too. I think my wording was not precise, and I'll edit it. This argument about algorithmic improvement is an argument that we will have powerful open source models (and powerful closed-source models), not that the gap between these will necessarily shrink. I think both the gap and the absolute level of capabilities which are open-source are important facts to be modeling. And this argument is mainly about the latter. 

Answer by Aaron_Scher5-3

Yeah, I think we should expect much more powerful open source AIs than we have now. I've been working on a blog post about this, maybe I'll get it out soon. Here are what seem like the dominant arguments to me: 

  • Scaling curves show strongly diminishing returns to $ spend: A $100m model might not be that far behind a $1b model, performance wise. 
  • There are numerous (maybe 7) actors in the open source world who are at least moderately competent and want to open source powerful models. There is a niche in the market for powerful open source models, and they hurt your closed-source competitors. 
  • I expect there is still tons of low-hanging fruit available in LLM capabilities land. You could call this "algorithmic progress" if you want. This will decrease the compute cost necessary to get a given level of performance, thus raising the AI capability level accessible to less-resourced open-source AI projects. [edit: but not exclusively open-source projects (this will benefit closed developers too). This argument is about the absolute level of capabilities available to the public, not about the gap between open and closed source.]
Load More