This is excellent. I believe that this result is a good simulation of "what we could expect if the universe is populated by aliens".
https://steemit.com/fermiparadox/@pasha-kamyshev/fermi-paradox
Tl;Dr
Assuming the following:
1) aliens consider both destroying other civilizations and too early contact a form of defection
2) aliens reason from udt principles
3) advanced civilizations have some capacity to simulate non advanced ones
Then roughly the model in the post will work to explain what the strategic equlibrium is.
if the is indeed a typo, please correct it at the top level post and link to this comment. The broader point is that the interpretation of P( H | X2, M) is probability of heads conditioned on Monday and X2, and P (H |X2) is probability of heads conditioned on X2. In the later paragraphs, you seem to use the second interpretation. In fact, It seems your whole post's argument and "solution" rests on this typo.
Dismissing betting arguments is very reminiscent of dismissing one-boxing in Newcomb's because one defines "CDT" as rati...
I think this post is fairly wrong headed.
First, your math seems to be wrong.
Your numerator is ½ * p(y), which seems like a Pr (H | M) * Pr(X2 |H, M)
Your denominator is 1/2⋅p(y)+1/2⋅p(y)(2−q(y)), which seems like
Pr(H∣M) * Pr(X2∣H,M) + Pr(¬H∣M) * Pr(X2∣¬H,M), which is Pr(X2 |M)
By bayes rule, Pr (H | M) * Pr(X2 |H, M) / Pr(X2 |M) = Pr(H∣X2, M), which is not the same quantity you claimed to compute Pr(H∣X2). Unless you have some sort of other derivation or a good reason why you omitted M in your calculations: this isn’t really “solving” anything.
Second,...
I think it's worth distinguishing between "smallest" and "fastest" circuits.
A note on smallest.
1) Consider a travelling salesman problem and a small program that brute-forces the solution to it. If the "deamon" wants to make a travelling salesman visit a particular city first, then they would simply order the solution space to consider it first. This has no guarantee of working, but the deamon would get what it wants some of the time. More generally, if there is a class of solutions we are indifferent to, but daemons ha...
This is really good, however i would love some additional discussion on the way that the current optimization changes the user.
Keep in mind, when facebook optimizes "clicks" or "scrolls", it does so by altering user behavior, thus altering the user's internal S1 model of what is important. This could frequently lead to a distortion of reality, beliefs and self-esteem. There have been many articles and studies correlating facebook usage with mental health. However, simply understanding "optimization" is enough evidence that th...
I am also confused. How does this do against EABot, aka C1=□(Them(Them)=D) and M = DefectBot. Is the number of boxes not well defined in this case?
hmm, looks like the year is wrong and the delete button has failed to work :(
Maybe this have been said before, but here is a simple idea:
Directly specify a utility function U which you are not sure about, but also discount AI's own power as part of it. So the new utility function is U - power(AI), where power is a fast growing function of a mix of AI's source code complexity, intelligence, hardware, electricity costs. One needs to be careful of how to define "self" in this case, as a careful redefinition by the AI will remove the controls.
One also needs to consider the creation of subagents with proper utilities as well,...
That's an idea that a) will certainly not work as stated, b) could point the way to something very interesting.
Well, i get where you are coming from with Goodhart's Law, but that's not the question. Formally speaking, if we take the set of all utility functions with complexity < N = FIXED complexity number, then one of them is going to be the "best", i.e. most correlated with the "true utility" function which we can't compute.
As you point out, with we are selecting utilities that are too simple, such as straight up life expectancy, then even the "best" function is not "good enough" to just punch into an AGI because it wil...
Regarding 2: So, I am a little surprised that step 2: Valuable goals cannot be directly specified is taken as a given.
If we consider an AI as rational optimizer of the ONE TRUE UTILITY FUNCTION, we might want to look for best available approximations of it short term. The function i have in mind is life expectancy(DALY or QALY), since to me, it is easier to measure than happiness. It also captures a lot of intuition when you ask a person the following hypothetical:
if you could be born in any society on earth today, what one number would be most congruent ...
Note: I may be over my head here in math logic world:
For procrastination paradox:
There seems to be a desire to formalize
T proves G => G, which messes with completeness. Why not straight up try to formalize:
T proves G at time t => T proves G at time t+1 for all t > 0
That way: G => button gets pressed at time some time X and wasn't pressed at X-1
However, If T proves G at X-1, it must also prove G at X, for all X > 1 therefore it won't press the button, unless X = 1.
Basically instead of reasoning of whether proving something makes it true,...
It's Pasha Kamyshev, btw :) Main engagement is through
1. reading MIRI papers, especially the older agent foundations agenda papers
2. following the flashy developments in AI, such as Dota / Go RL and being somewhat skeptical of the "random play" part of the whole thing (other things are indeed impressive)
3. Various math text books: category theory for programmers, probability the logic of science, and others
4. Trying to implement certain theory in code (quantilizers, different prediction market mechanisms)
5. Statistics investigations into various claims of "algorithmic bias"
6. Conversations with various people in the community on the topic