yeah definitely, there could be a possibility for quoting/linking answers from other branches - i haven't seen any UI that would support something like it, but also my guess is that it wouldn't be too difficult to make one. my thinking about it was that there would be one main branch and several other smaller branches that could connect to the main one, so that some points can be discussed in greater depth. also, the branching should probably not happen always, but just when both participants occasionally agree on them.
It seems to me that these types of conversations would benefit if they were not chains but trees instead. Usually when two people have a disagreement/different point of view, there is usually some root cause of this disagreement. When the conversation is a chain, I think it likely results in one person explaining her arguments/making several points, another one having to expand on each, and then at some point in order for this to not result in massively long comments, the participants have to paraphrase, summarise or ignore some of the arguments to make it...
My guess is that it will be a scaled-up Gato - https://www.lesswrong.com/posts/7kBah8YQXfx6yfpuT/what-will-the-scaled-up-gato-look-like-updated-with. I think there might be some interesting features when the models are fully multi-modal - e.g. being able to play games, perform simple actions on a computer etc. Based on the announcement from google I would expect full multimodal training - image, audio, video, text in/out. Based on deepmind's hiring needs I would expect they want it to also generate audio/video and extend the model to robotics (the brain of...
sure, I agree that writing is a tough gig and the distribution of what is read how much is pareto, still however the writers contribute to the chance that they improve the top writings that are read the most.
I think I'm much less interested in how deeply poeple benefit, but more in how many of them can potentially benefit and whether this scales roughly with the effort e.g. professions where by spending X effort I can serve Y people and if I wanted to serve 2Y people I would have to spend 2X effort (chef/teacher/hairdresser...) don't fall into the same cat...
Some of my updates:
at least one version with several trillion parameters, at least 100k tokens long context window(with embeddings etc. seemingly 1million), otherwise I am quite surprised that I mostly still agree with my predictions, regarding multimodal/RL capabilities. I think robotics could still see some latency challenges, but anyway there would be a significant progress in tasks not requiring fast reactions - e.g. picking up things, cleaning a room, etc. Things like superagi might become practically useful and controlling a computer with text/voice would seem easy.
I believe we can now say with a high level of confidence that the scaled up GATO will be Google's Gemini model released in next few months. Does anyone want to add/update their predictions?
it is fixed now, thanks!
it could be sparse...a 175B parameters GPT-4 that has 90 percent sparsity could essentially equivalent to 1.75T param GPT-3. Also I am not exactly sure, but my guess is that if it is multimodal the scaling laws change (essentially you get more varied data instead of training it always on predicting text which is repetitive and likely just a small percentage contains new useful information to learn).
Stupid beginner question: I noticed that while interesting, many of the posts here are very long and try to go deep into the topic explored often without tldr. I'm just curious - how do the writers/readers find time for it? are they paid? If someone lazy like me wants to participate - is there a more twitter-like Lesswrong version?
my understanding is that they fully separate computation and memory storage. So whhile traditional architectures need some kind of cache to store large amount of data for model partitions from which just a small portion is used for the computation at any single time point, CS2 only requests what it needs so the bandwidth doesnt need to be so big
I am certainly not an expert, but I am still not sure about your claim that it's only good for running small models. The main advantage they claim to have is "storing all model weights externally and stream them onto each node in the cluster without suffering the traditional penalty associated with off chip memory. weight streaming enables the training of models two orders of magnitude larger than the current state-of-the-art, with a simple scaling model." (https://www.cerebras.net/product-cluster/ , weight streaming). So they explicitly claim that it shou...
oh and besides IQ tests, i predict it would also be able to pass most current CAPTCHA-like tests (though humans would still be better in some)
What are your reasons for AGI being so far away?
Nah...I still believe that the future AGI would invent a time machine and then it invents itself before 2022
Why do you think TAI is decades away?
I should also make a prediction for the nearer version of GATO to actually answer the questions from the post. So if a new version of GATO appears in next 4 months, I predict:
80% confidence interval: Gato will have 50B-200B params. Context window will be 2-4x larger(similar to GPT-3)
50%: No major algorithmic improvements, RL or memory. Maybe use of perceiver. Likely some new tokenizers. The improvements would come more from new data and scale.
80%: More text,images,video,audio. More games and new kinds of data. E.g. special prompting to do something in a ga...
Isn't the risk coming from insufficient AGI alignment relatively small compared to vulnerable world hypthesis? I would expect that even without the invention of AGI or with aligned AGI, it is still possible for us to use some more advanced AI techniques as research assistants that help us invent some kind of smaller/cheaper/easier to use atomic bomb that would destroy the world anyway. Essentially the question is why so much focus on AGI alignment instead of general slowing down of technological progress?
I think this seems quite underexplored. The fact that it is hard to slow down the progress doesn't mean it isn't necessary or that this option shouldn't be researched more.
I see. I will update the post with some questions. I find it quite difficult though to forecast on how percentages of the performance metrics would improve, compared to just predicting capabilities as the datasets are probably not so well known.
Ok, I was thinking about this a bit and finally got some time to write it down. I realized that it is quite hard to make predictions about the first version of GATO as it depends on what the team would prioritize in development. Therefore I'll try to predict some attributes/features of a GATO-like model that should be available in next two years, while expecting that many will appear sooner - it is just difficult to say which ones. I'm not a professional ML researcher so I might get some factual things wrong, so I would be happy to hear from people w...
this has generated much less engagement than I thought it would...what am I doing wrong?
thanks for this post! I think it is always great when people share their opinions about the timelines and more people(even the ones not directly involved in ML) should be encouraged to freely express their view without the fear that they will be held accountable in the case they are wrong. In my opinion, even the people directly involved in ML research seem to be too reluctant to share their timelines and how they impact their work which might be useful for others. Essentially, I think that people should share their view when it is something that is going ...
Hi Rohin, how long does it usually take to hear back if selected for the next stage? I applied two weeks ago but didn't receive any other mail yet, so I was just curious if I still have a chance or was not selected.
sure, I'm actually not suggesting that it should necessarily be a feature of dialogues on lw, it was just a suggestion for a different format (my comment generated almost opposite karma/agreement votes, so maybe this is the reason?). it also depends on frequency how often do you use the branching - my guess is that most don't require it in every point, but maybe a few times in the whole conversation might be useful.