All of AustinLorenz's Comments + Replies

I finally had time to read this, and I must say, that's an extremely creative premise. I'm puzzled by the proof of theorem 3.1, however. It claims "By inspection of FairBot, PA⊢◻(FB(FB) = C)-->FB(FB=C)."

However, by inspection of fairbot, the antecedent of the conditional should be FB(FB) = C rather than ◻(FB(FB) = C). The code says "if it's a theorem of PA that X cooperates with me, then cooperate." It doesn't say "if it's a theorem of PA that it's provable in PA that X cooperates with me, then cooperate." So I don't believe you can appeal to Lob's theorem in this case. .

2AlexMennen
They applied Lob's theorem correctly. "X is a theorem of PA" and "X is provable in PA" mean the same thing, and both are represented by ◻X. The antecedent of "if it's a theorem of PA that it's provable in PA that FB cooperates with me, then cooperate" would be represented as ◻(◻(FB(FB) = C)), but this never appears either in the code or in the antecedent for Lob's theorem. "FB(FB) = C" on its own, without the box, would mean it is true that fairbot cooperates with itself, not that PA can prove that fairbot cooperates with itself.

I'm not sure if this post is obsolete, but it was linked to by a recent post, so I will provide feedback.

The translation to the formal version goes from "if a theory T has a short proof that any proof of T's inconsistency must be long, then T is inconsistent" to "if T proves in n symbols that 'T can't prove a falsehood in f(n) symbols", then T is inconsistent.'"

But inconsistency is not the same as proving a falsehood. Assuming that PA is consistent, the theory PA+~Con(PA) is consistent, since PA cannot prove its own consistency, b... (read more)

0cousin_it
By "proving a falsehood" I meant proving that 0=1. That's how people usually formalize something like Con(PA).

Actually, "not proving a falsehood" is not the same as being consistent; assuming that PA is consistent, the theory PA+~Con(PA) is also consistent, but proves the false statement ~Con(PA). Consistency is the weaker condition of not proving both a formula and its negation.

7Qiaochu_Yuan
I should have said "contradiction"; edited. I intended "falsehood" to mean "false in all models," not "false in the standard model."