All of Bob Baker's Comments + Replies

See page six of the paper for the authors dealing with this point. It's certainly a potential explanation, but the map of obesity in the US does seem to suggest that being, say, at the mouth of the Mississippi basin is much worse than being on the west coast, despite them both being at sea level.

3Natália
The mouth of the Mississippi basin is much poorer than the West Coast, and has a lot fewer Asians (who are exceptionally thin). I'd guess those things probably play a role. 

Why not solve the paradox by dropping the expectation that infinitty works like finity? (And how does Cook solve the paradox?)

The book "solves" the paradox by stating that, yes, you can add an infinite number of guests to Hilbert's hotel, even when it was full to begin with. Again, it's only stating surprising results and if Hilbert considered it sufficiently surprising to articulate then I'm not going to argue!

It's not that infinity doesn't work, it's that it struck me that it's barren of interesting structure. Yes, infinity + infinity is still infinit... (read more)

It's interesting that you choose dividing by zero as your comparison to infinity, because there are infinite possible solutions to x/0.

I think if you ask a mathematician what x/0 is, they'll say "undefined" or "that's not a valid question". But if you ask how many natural numbers there are they'll say "infinity" (or ℵ-zero). But we could have defined x/0 as "foo" to see what resulted, like sqrt(-1) is i. But I think not much results and so people don't bother, and maybe we shouldn't have bothered with infinity either.

(I don't think the same about infini... (read more)

I don't understand what you mean by "the structure behind infinity"

I mean it in contrast to, for example, sqrt(-1). There was clearly a “hole” in polynomial equations: equations that couldn't be solved. Cardano decided to just define the thing that would fit in that hole and explored the structures that resulted. That turned out fantastically! The structure of complex numbers is incredibly rich and, with 20th century physics, turns out to be arguably more fundamental than the reals.

People tried to repeat that with higher-dimensional numbers. Quaternions... (read more)

2philh
Goodstein's theorem is a theorem about finite numbers that can be proven using infinite ordinals, and can't be proven using just Peano Arithmetic. I take it that's the kind of thing you're asking about? Though I couldn't tell you how useful that in turn is.
2lsusr
I understand clearly what you mean now. From the group theory perspective (what you call "structure"), infinity is less interesting than i. From the notational perspective, ∞ isn't really a number and is therefore not relevant to this discussion. I think the most interesting thing to come out of the study of infinity is the difference between countable and uncountable infinities. A countable infinity is the order of a set that can be put into one-to-one correspondence with the natural numbers. The rational numbers are an example of a countable infinity. An uncountable infinity is the order of a set too large to be put into one-to-one correspondence with the natural numbers. The irrational numbers are an example of a countable infinity. Infinity is one of those concepts which seems fundamental but isn't. Infinity isn't fundamental because infinity isn't really a single concept. It is an bundle of several related ideas. In mathematics, there are many ideas adjacent to infinity like "calculus" and "conditional convergence" which are important, but it is true they do not come from treating infinity as a number. Rather, they come from not treating infinity as a number.
-1Dale Udall
It's interesting that you choose dividing by zero as your comparison to infinity, because there are infinite possible solutions to x/0. It seems to me that by introducing infinites and infinitesimals to mathematics, mathematicians did something similar to how algebra made addition and multiplication "live together" despite their incompatability. By giving definition to something that sometimes can and sometimes can't work with other parts of math, mathematicians brought the outside in, and fenced the universe. I also find myself wondering if anyone thinks giving zero a name was a mistake. Zero is the reason there's an x/0 asymptote. As someone who read the book, you can answer this question: how often was zero (or nothingness) included in the paradoxes in the book? Without having read it, I'm guessing all of them hinge on some weirdness of 1 (unity), zero (null) or infinity.
1TAG
OK. The paradox in Hilbert's hotel is that infinite quantities dont work like finite quantities ... which is only surprising if you have the expectation that they should. So why is infinity itself the mistake ? Why not solve the paradox by dropping the expectation that infinitty works like finity? (And how does Cook solve the paradox?)

The culture of the FDA didn't spring into being this year, of course. This book covers their failures to regulate foreign manufacturing of generic drugs and it substantially dented my previous belief that generic versions of drugs are equal to the branded. The book is, however, about twice as long as it should be and you may prefer this podcast with the author.

5ChristianKl
Before writing the book Katherine Eban wrote an article for CNN Money on Ranbaxy: http://www.sacw.net/article4564.html (The fact that CNN doesn't host the article anymore it's worth noting; it seems someone got them to take it down) 
Answer by Bob Baker10

Don't forget that (in the US, at least) there is a fine for owing too much tax at filing time, while there's no penalty for having paid too much except for opportunity costs. Given the extremely low interest rates currently, the risk is not symmetrical.

I think that personal choices about morality are unaffected by the fact that significantly different cultures exist. Perhaps they call for a soupçon more humility, but your moral intuitions remain axiomatic for you.

Rather I think the adjustment needed in some cases is a greater weight on the idea that your moral intuitions are significantly shaped by the culture that you found yourself in, and that the scope of possibilities is wide.

Perhaps this has little practical impact because, though your axioms might be more arbitrary than supposed, you have little c... (read more)