All of ksvanhorn's Comments + Replies

The fact that people tend to specialize in one or the other does not mean that "the two have little to do with each other." Likewise, there are physicists who spend a lot of time working in foundations and interpretation of QM, and others who spend their time applying it to solve problems in solid state physics, nuclear physics, etc. They're working on different kinds of problems, but it's absurd to say that the two have "little to do with each other."

1cubefox
But do look at introductions to Bayesian statistics versus Bayesian epistemology. There does exist hardly any overlap. One thing they have in common is that they both agree that it makes sense to assign probabilities to hypotheses. But otherwise? I personally know quite a lot about Bayesian epistemology, but basically none of that appears to be of interest for Bayesian statisticians.

This is simply wrong. Bayesian statistics is just Bayesian probability theory. As is Bayesian epistemology. Bayesian probabilities are epistemic probabilities.

1cubefox
I don't think there is a "Bayesian" probability theory. There is Kolmogorov's axiomatization of probability theory, and there is the subjective interpretation of probability, but those are not necessary or sufficient for Bayesian epistemology or Bayesian statistics. Bayesian statistics contains a lot of specific methodology and concepts, like credible intervals, and Bayesian epistemology contains normative principles like conditionalization which do not follow from the axioms. Experts on either likely haven't heard of the other. Books on Bayesian statistics and Bayesian epistemology contain very very different material. Edit: Just look at introductions to Bayesian statistics and Bayesian epistemology.

But you'd have to be one really stupid correctional officer to get an order to disable the cameras around Epstein's cell the night he was murdered, and not know who killed him after he dies.

I assume you mean "who ordered him killed."

Here's what a news report says happened:

A letter filed by Assistant US Attorneys Jason Swergold and Maurene Comey said "the footage contained on the preserved video was for the correct date and time, but captured a different tier than the one where Cell-1 was located", New York City media report.

Prince Andrew spoke to the BBC i

... (read more)

Domain methodsofrationality.com

I own the domain methodsofrationality.com, but I'm not really doing anything with it. If you want it, send me a message telling me what you plan to do with it. I'll give it to whomever, in my opinion, has the best use for it.

But when you do assert that basically the entire U.S. government has collaborated on murdering Epstein

Isn't this a straw man? If someone powerful wanted Epstein dead, how many people does that require, and how many of them even have to know why they're doing what they're doing? It seems to me that only one person -- the murderer -- absolutely has to be in on it. Other people could get orders that sound innocuous, or maybe just a little odd, without knowing the reasons behind them. And, of course, there are always versions of "Will no one rid me of this troublesome priest?" to ensure deniability.

1lc
I'm exaggerating for comedic effect. Obviously the entire U.S. government does not have to literally be in on the scam. I guess some of these orders are more suspicious than others, in the moment. But you'd have to be one really stupid correctional officer to get an order to disable the cameras around Epstein's cell the night he was murdered, and not know who killed him after he dies. Even if you were that dumb, it seems like something you would mention unless you were threatened, in which case you obviously are now a possible defecting member of the plot. For the most part, the movie/TV thing of phrasing an order strangely in order to have "deniability" in case that person is wearing a wire doesn't actually work. If you're giving someone an order and they follow through with it, they obviously have interpreted what you say as an order and will testify to that fact if they defect. It's not as if they don't know the dragon isn't in the garage. It sometimes hinders third parties from understanding an order you give in the same way an encrypted connection prevents others from reading your password, but in my criticism I'm already assuming that Bill Barr has some safe way to communicate with these people (which might not even be true!).

The context is *all* applications of probability theory. Look, when I tell you that A or not A is a rule of classical propositional logic, we don't argue about the context or what assumptions we are relying on. That's just a universal rule of classical logic. Ditto with conditioning on all the information you have. That's just one of the rules of epistemic probability theory that *always* applies. The only time you are allowed to NOT condition on some piece of known information is if you would get the same answer whether or not you condition... (read more)

2Chris_Leong
"Look, when I tell you that A or not A is a rule of classical propositional logic, we don't argue about the context or what assumptions we are relying on" - Actually, you get questions like, "This sentence is false", which fall outside out classical propositional logic. This is why it is important to understand the limits which apply.

You are simply assuming that what I've calculated is irrelevant. But the only way to know absolutely for sure whether it is irrelevant is to actually do the calculation! That is, if you have information X and Y, and you think Y is irrelevant to proposition A, the only way you can justify leaving out Y is if Pr(A | X and Y) = Pr(A | X). We often make informal arguments as to why this is so, but an actual calculation showing that, in fact, Pr(A | X and Y) != Pr(A | X) always trumps an informal argument that they should be equal.

Your "probability of... (read more)

2Chris_Leong
I'm not using the word irrelevant in the sense of "Doesn't affect the probability calculation", I'm using it in the sense of, "Doesn't correspond to something that we care about". Yeah, I could have made my language clearer in my second paragraph. I was talking about the "probability of guessing the correct card" for a particular guessing strategy. And the probability of the next card being a king over some set of situations corresponds to the probability that the strategy of always guessing "King" for the next card gives the correct solution. Anyway, my point was that you can manipulate your probability of being correct by changing which situations are included inside this calculation.

But randomly awakening Beauty on only one day is a different scenario than waking her both days. A priori you can't just replace one with the other.

Yes, in exactly the same sense that *any* mathematical / logical model needs some justification of why it corresponds to the system or phenomenon under consideration. As I've mentioned before, though, if you are able to express your background knowledge in propositional form, then your probabilities are uniquely determined by that collection of propositional formulas. So this reduces to the usual modeling question in any application of logic -- does this set of propositional formulas appropriately express the relevant information I actually have available?

2Chris_Leong
Yeah, but standard propositions don't support indexicals, only "floating" observers, so why is this relevant?

This is the first thing I've read from Scott Garrabant, so "otherwise reputable" doesn't apply here. And I have frequently seen things written on LessWrong that display pretty significant misunderstandings of the philosophical basis of Bayesian probability, so that gives me a high prior to expect more of them.

I'm not trying to be mean here, but this post is completely wrong at all levels. No, Bayesian probability is not just for things that are space-like. None of the theorems from which it derived even refer to time.

So, you know the things in your past, so there is no need for probability there.

This simply is not true. There would be no need of detectives or historical researchers if it were true.

If you partially observe a fact, then I want to say you can decompose that fact into the part that you observed and the part that you didn't, and say that
... (read more)

I think you are correct that I cannot cleanly separate the things that are in my past that I know and the things that are in my post that I do not know. For example, if a probability is chosen uniformly at random in the unit interval, then a coin with that probability is flipped a large number of times, then I see some of the results, I do not know the true probability, but the coin flips that I see really should come after the thing that determines the probability in my Bayes' net.

9dxu
[META] As a general heuristic, when you encounter a post from someone otherwise reputable that seems completely nonsensical to you, it may be worth attempting to find some reframing of it that causes it to make sense--or at the very least, make more sense than before--instead of addressing your remarks to the current (nonsensical-seeming) interpretation. The probability that the writer of the post in question managed to completely lose their mind while writing said post is significantly lower than both the probability that you have misinterpreted what they are saying, and the probability that they are saying something non-obvious which requires interpretive effort to be understood. To maximize your chances of getting something useful out of the post, therefore, it is advisable to condition on the possibility that the post is not saying something trivially incorrect, and see where that leads you. This tends to be how mutual understanding is built, and is a good model for how charitable communication works. Your comment, to say the least, was neither.
path analysis requires scientific thinking, as does every exercise in causal inference. Statistics, as frequently practiced, discourages it, and encouraged "canned" procedures instead.

Despite Pearl's early work on Bayesian networks, he doesn't seem to be very familiar with Bayesian statistics -- the above comment really only applies to frequentist statistics. Model construction and criticism ("scientific thinking") is an important part of Bayesian statistics. Causal thinking is common in Bayesian statistics, because causal int... (read more)

3PeterMcCluskey
That quote is from a section on history, with the context implying that "as frequently practiced" is likely to refer to an average over the 20th century, not a description of 2018.
I don't believe that the term "probability" is completely unambiguous once we start including weird scenarios that fall outside the scope which standard probability was intended to address.

The intended scope is anything that you can reason about using classical propositional logic. And if you can't reason about it using classical propositional logic, then there is still no ambiguity, because there are no probabilities.

You know, it has not actually been demonstrated that human consciousness can be mimicked by Turing-equivalent computer.

The evidence is extremely strong that human minds are processes that occur in human brains. All known physical laws are Turing computable, and we have no hint of any sort of physical law that is not Turing computable. Since brains are physical systems, the previous two observations imply that it is highly likely that they can be simulated on a Turing-equivalent computer (given enough time and memory).

But regardless of that, the Sleeping B... (read more)

In these kinds of scenarios we need to define our reference class and then we calculate the probability for someone in this class.

No, that is not what probability theory tells us to do. Reference classes are a rough technique to try to come up with prior distributions. They are not part of probability theory per se, and they are problematic because often there is disagreement as to which is the correct reference class.

1Chris_Leong
"They are not part of probability theory per se, and they are problematic because often there is disagreement as to which is the correct reference class" - I'll write up a post on how to choose the correct reference class soon, but I want to wait a bit, because I'm worried that everyone on Less Wrong is all Sleeping Beauty'ed out. And yes, probability theory takes the set of possibilities as given, but that doesn't eliminate the need for a justification for this choice.
When Sleeping Beauty wakes up and observes a sequence, they are learning that this sequence occurs on a on a random day

Right here is your error. You are sneaking in an indexical here -- Beauty doesn't know whether "today" is Monday or Tuesday. As I discussed in detail in Part 2, indexicals are not part of classical logic. Either they are ambiguous, which means you don't have a proposition at all, or the ambiguity can be resolved, which means you can restate your proposition in a form that doesn't involve indexicals.

What you are pro... (read more)

1Chris_Leong
"What you are proposing is equivalent to adding an extra binary variable d to the model, and replacing the observation R(y, Monday) or R(y, Tuesday) with R(y, d). That in turn is the same as randomly choosing ONE day on which to wake Beauty (in the Tails case) instead of waking her both times" - Yes, that is equivalent to what I'm proposing by saying that only one day "counts". I'll explain why this formalism is useful in my next post.
All this maths is correct, but why do we care about these odds? It is indeed true that if you had pre-committed at the start to guess if and only if you experienced the sequence 111

We care about these odds because the laws of probability tell us to use them. I have no idea what you mean by "precommitted at the start to guess if and only if..." I can't make any sense of this or the following paragraph. What are you "guessing"? Regardless, this is a question of epistemology -- what are the probabilities, given the information you have -- and those probabilities have specific values regardless of whether you care about calculating them.

1Chris_Leong
"We care about these odds because the laws of probability tell us to use them" - I'm not disputing your calculation, just explaining what you've actually calculated and why it isn't relevant. "Pre-committed at the start to guess if and only if..." - Given a scenario, we can calculate the probabilities when particular events occur. For example, if we have a deck of cards and we reveal cards one by one, we can ask about the probability that the next card is a king given that the previous card was a king. One way to describe this scenario would be to ask about the probability of guessing the correct card if you promise to guess the next card whenever you see a king and to not guess whenever you don't. If you break this promise, then it may alter the chance of you guessing correctly. Is my use of language clear now?
Neal wants us the condition on all information, including the apparently random experiences that Sleeping Beauty will undergo before they answer the interview question. This information seems irrelevant, but Neal argues that if it were irrelevant that it wouldn't affect the calculation. If, contrary to expectations, it actually does, then Neal would suggest that we were wrong about its irrelevance.

This isn't just Neal's position. Jaynes argues the same in Probability Theory: The Logic of Science. I have never once encountered an academic bo... (read more)

1Chris_Leong
But within what context? You can't just take a formula or rule and apply it without understanding the assumptions it is reliant upon.
Unfortunately, Ksavnhorn's post jumps straight into the maths and doesn't provide any explanation of what is going on.

Ouch. I thought I was explaining what was going on.

But the development of probability theory and the way that it is applied in practice were guided by implicit assumptions about observers.

I don't think that's true, but even if it is an accurate description of the history, that's irrelevant -- we have justifications for probability theory that make no assumptions whatsoever about observers.

You seemed to argue in your first post that selection effects were not routinely handled within standard probability theory.

No, I argued that this isn't a case of selection effects.

Certainly agreed as
... (read more)
When Sleeping Beauty wakes up and observes a sequence, they are learning that this sequence occurs on a on a random day out of those days when they are awake.

That would be a valid description if she were awakened only on one day, with that day chosen through some unpredictable process. That is not the case here, though.

What you're doing here is sneaking in an indexical -- "today" is either Monday if Heads, and "today" is either Monday or Tuesday if Tails. See Part 2 for a discussion of this issue. To the extent that indexicals are... (read more)

From the OP: "honor requires recognition from others." That's not a component of the notion of honor I grew up with. Nor is the requirement of avenging insults.

1ryan_b
It looks like I focused on the wrong part of the comment; if I read you rightly now, then you are speaking to the difference between honor cultures and dignity cultures. That other people are not a component is why the difference is sometimes called shame cultures vs. guilt cultures. In dignity/guilt cultures, when we do the right thing we just get the satisfaction of having done the right thing, and when we do the wrong thing we are supposed to feel guilty. In honor/shame cultures, when people do the right thing they also get the respect of their community, and when they do the wrong thing they tend to be deliberately humiliated by them. There's another group of scholars that think of this entirely in terms of reputation because of the role other people play, but I haven't read anything by them.

This is a very, very different concept of honor than the one I grew up with. I was taught that honor means doing what is right (ethical, moral), regardless of personal cost. It meant being unfailingly honest, always keeping your word, doing your duty, etc. How others perceived you was irrelevant. One example of this notion of honor is the case of Sir Thomas More, who was executed by Henry VIII because his conscience would not allow him to cooperate with Henry's establishment of the Church of England. Another is the Dreyfus Affair and Colonel Georges P... (read more)

4ryan_b
What you describe is not as different as it seems. Doing what is right regardless of personal cost fits exactly into the larger framework of honor. The question is mostly what exactly those right things to do are. Sommers mostly refers to herders, but if we turn to history there is a larger group of cultures further along the same continuum: pastoralists. The best documented among them are the Mongols, and the stories of the Mongols are replete with extreme examples of this sort. For example, falling asleep on guard duty was punishable by death, yet when asked whether they had fallen asleep they famously would not lie and then be executed. I used to believe that this sort of thing was the kind of routine exaggerations that often are told about enemies in order to make them more exotic or dangerous, but further reading has heavily updated me in favor of taking them seriously. The point is that the right thing is always a matter of personal responsibility under the honor paradigm. The examples you provide fit the pattern perfectly; the difference is that Sir Thomas More identified with the Church and Colonel Picquart with the military in deciding what the right thing to do is.
...the standard formalization of probability... was not designed with anthropic reasoning in mind. It is usually taken for granted that the number of copies of you that will be around in the future to observe the results of experiments is fixed at exactly 1, and that there is thus no need to explicitly include observation selection effects in the formalism.

1. Logic, including probability theory, is not observer-dependent. Just as the conclusions one can obtain with classical propositional logic depend only on the information (propositional axioms) availabl... (read more)

5AlexMennen
Right, probability theory itself makes no mention of observers at all. But the development of probability theory and the way that it is applied in practice were guided by implicit assumptions about observers. You seemed to argue in your first post that selection effects were not routinely handled within standard probability theory. Unless perhaps you see a significant difference between the selection effect that suggests that the coin has a 1/3 chance of having landed heads in the Sleeping Beauty problem and other selection effects? I was attempting to concede for the sake of argument that accounting for selection effects as typically practiced depart from standard probability theory, not advance it as an argument of my own. Certainly agreed as to logic (which does not include probability theory). As for probability theory, it should not be a priori surprising if a formalism that we had strong intuitive reasons for being very general, in which we made certain implicit assumptions about observers (which do not appear explicitly in the formalism) in these intuitive justifications, turned out not to be so generally applicable in situations in which those implicit assumptions were violated. As for whether probability theory does actually lack generality in this way, I'm going to wait to address that until you clarify what you mean by applying standard probability theory, since you offered a fairly narrow view of what this means in your original post, and seemed to contradict it in your point 3 in the comment. My position is that "the information available" should not be interpreted as simply the existence of at least one agent making the same observations you are, while declining to make any inferences at all about the number of such agents (beyond that it is at least 1). I take no position on whether this position violates "standard probability theory".

No, P(H | X2, M) is , and not . Recall that is the proposed model. If you thought it meant "today is Monday," I question how closely you read the post you are criticizing.

I find it ironic that you write "Dismissing betting arguments is very reminiscent of dismissing one-boxing in Newcomb's" -- in an earlier version of this blog post I brought up Newcomb myself as an example of why I am skeptical of standard betting arguments (not sure why or how that got dropped.) The point was that standard betting argu... (read more),,,,,

The point is that the meaning of a classical proposition must not change throughout the scope of the problem being considered. When we write A1, ..., An |= P, i.e. "A1 through An together logically imply P", we do not apply different structures to each of A1, ..., An, and P.

The trouble with using "today" in the Sleeping Beauty problem is that the situation under consideration is not limited to a single day; it spans, at a minimum, both Monday and Tuesday, and arguably Sunday and/or Wednesday also. Any properly constructed proposition us... (read more)

...the details of the experiment do provide context for "today." But as a random variable, not an explicit value.

You seem to think that "random" variables are special in some way that avoids the problems of indexicals. They are not. When dealing with epistemic probabilities, a "random" variable is any variable whose precise value is not known with complete certainty.

Still, there are ways to avoid using an indexical in a solution. I suggested one in a comment to part 1: use four Beauties, where each is left asleep under a diffe
... (read more)

The situation with indexicals is similar to the situation with "irrelevant" information. If there is any dispute over whether some information is irrelevant, you condition on it and see if it changes the answer. If it does, the judgment that the information was irrelevant was wrong.

Same thing with indexicals. You may claim that use of an indexical in a proposition is unambiguous. The only way to prove this is to actually remove the ambiguity -- replace it with a more explicit statement that lacks indexicals -- and see that this doesn't chang... (read more),

You're right, my argument wasn't quite right. Thanks for looking into this and fixing it.

I think a variation of my approach to resolving the betting argument for SB can also help deal with the very large universe problem. I've taken a look at the following setup:

  • There are Experimenters scattered throughout the universe, where is very, very large. Each Experimenter tries to determine which of two hypotheses and about the universe are correct by running some experiment and collection some data. Let be the data collected, and let be the remaining information (experiences, memories) that could distinguish this Experimenter from ot
... (read more),,,,,,,,,,,,,,,,,,
2Radford Neal
Interesting. I guess for this to work, one has to have what one might call a non-indexical morality - one that might favour people very, very much like you over others, but that doesn't favour YOU (whatever that means) over other nearly-identical people. (i"m going for "nearly-identical" over "identical", since I'm not sure what it means for there to be several people who are identical.) It seems odd that morality should have anything to do with probability, but maybe it does....

How do I do things like tables using the WYSIWYG interface? There doesn't seem to be any way to insert markdown in that interface. And once you've already been using WYSIWYG on an article, you can't really switch to markdown -- I tried, and it was a complete mess.

3Said Achmiz
Standard Markdown does not support tables (there are extensions to Markdown that add tables support, but I don’t think Less Wrong uses one of such).
At any point in the history that Beauty remembers in step 2 of step 3, the proposition has a simple, single truth value.

No, it doesn't. This boils down to a question of identity. Absent any means of uniquely identifying the day -- such as, "the day in which a black marble is on the dresser" -- there is a fundamental ambiguity. If Beauty's remembered experiences and mental state are identical at a point in time on Monday and another point in time on Tuesday, then "today" becomes ill-defined for her.

In some instances of the expe
... (read more)
1Jeff Jo
At any point in the history that Beauty remembers when she is in one of those steps, the proposition M, "Today is Monday," has a simple, single truth value. All day. Either day. If she is in step 2, it is "true." If she is in step 3, it is "false." The properties of "indexicals" that you are misusing apply when, within her current memory state, the value of "today" could change. Not within the context of the overarching experiment. This has nothing to do with whether she knows what that truth value is. In fact, probability is how we represent the "fundamental ambiguity" that the simple, single truth value belonging to a proposition is unknown to us. If you want to argue this point, I suggest that you try looking for the forest through the trees. I tell you that I will flip a coin, ask a question, and then repeat the process. If the question is "What is the probability that the coin is showing Heads?", and I require an answer before I repeat the flip, then coin's state has a simple, single truth value that you can represent with a probability. If the question is "What is the probability that the coin is showing Heads?", and I require an answer only at after the second flip, the question only applies to the second since it asks about a current state.But it has a simple, single truth value that you can represent with a probability. If the question is "What is the probability of showing Heads?" then the we have the logical conundrum you describe. "Showing" is an indexical. It can change over time. But it is only an issue if we refer to it in the context of a range of time where it does change. That's why indexicals are a problem in general, but maybe not in a specific case. "Today" is never ill-defined for Beauty. The entirety of the experiment includes Sunday, Wednesday, and two other days. She knows that. The portion that exists in her memory state at the time she is asked to provide an answer consists of Sunday (when she learned it all), which cannot be "Tod
Note the clause "in general."

Now you're really stretching.

And over the duration of when Beauty considers the meaning of "today," it does not change.

That duration potentially includes both Monday and Tuesday.

"Today" means the same thing every time Beauty uses it.

This is getting ridiculous. "Today" means a different thing on every different day. That's why the article lists it as an indexical. Going back to the quote, the "discussion" is not limited to a single day. There are at least two days invol... (read more)

It is true on Monday when Beauty is awake, and false on Sunday Night, on Tuesday whether or not Beauty is awake, and on Wednesday.

That's not a simple, single truth value; that's a structure built out of truth values.

The proposition "coin lands heads" is sometimes true, and sometimes false, as well.

No, it is not. It has the same truth value throughout the entire scenario, Sunday through Wednesday. On Sunday and Monday it is impossible to know what that truth value is, but it is either true that the coin will land heads, or false that it... (read more)

-1Jeff Jo
(Not in order) Note the clause "in general." Any assertion that applies "in general" can have exceptions in specific contexts. We similarly cannot deduce, in general, that a coin toss which influences the path(s) of an experiment, is a 50:50 proposition when evaluated in the context of only one path. An awake Beauty is asked about her current assessment of the proposition "The coin will/has landed Heads." Presumably, she is supposed to answer on the same day. So, while the content of the expression "today" may change with the changing context of the overarching experiment, that context does not change between asking and answering. So this passage is irrelevant. And the problem with using this argument on the proposition "Today is Monday," is that neither the context, nor the meaning, changes within the problem Beauty addresses. No, it analyzed two specific usages of an indexical, and showed that they represented different propositions. And concluded that, in general, indexicals can represent different propositions. It never said that multiple usages of a time/location word cannot represent the same proposition, or that we can't define a situation where we know they represent the same proposition. So my corner bar can post a sign saying "Free Beer Tomorrow," without ever having to pour free suds. But if it says "Free Beer Today," they will, because the context of the sign is the same as the context when somebody asks for it. Both are indexicals, but the conditions that would make it ambiguous are removed. And over the duration of when Beauty considers the meaning of "today," it does not change. "Today" means the same thing every time Beauty uses it. This is different than saying the truth value of the statement is the same at different points in Beauty's argument; but it is. She is making a different (but identical) argument on the two days. Only if those circumstances might change within the scope of their use. And throughout Beauty's discussion of the pro
-1Jeff Jo
At any point in the history that Beauty remembers in step 2 of step 3, the proposition has a simple, single truth value. But she cannot determine what it that value is. This is basis for being able to describe its truth value with probabilities. In some instances of the experiment, it is true. In others, it is false. Just like "today is Monday" has the same truth value at any point in the history that Beauty remembers in step 2 of step 3. Your error is in falling to understand that, to an awake Beauty, the "experiment" she sees consists of Sunday and a single day after it. She just doesn't know which. In her experiment, the proposition "today is Monday" has a simple, single truth value. The truth of "it is Monday" never changes in any point of the scenario she sees after being wakened. And the point I am trying to get across to you is that it cannot change at any point of the problem Beauty is asked to analyze. The problem that I am analyzing is the problem that Beauty was asked to analyze. Not what an outside observer sees. She was told some details on Sunday, put to sleep, and is now awake on an indeterminate day. She is asked about a coin that may have been flipped, or has already been flipped, but to her that difference is irrelevant. "Today is Monday" is either true, or false (which means "Today is Tuesday"). She doesn't know which, but she does know that this truth value cannot change within the scope of the problem as she sees it now. No, "time" is an indexical. That means that the value of time can change the context of the problem when you consider different values to be part of the same problem. Not that a problem that deals with only one specific value, and so an unchanging context, has that property. While Beauty is awake, the day does not change. While Beauty is awake, the context of the problem does not change. While Beauty is awake, the other day of the experiment does not exist in her context. So for our problem, this resolves the issue that c

On the first read I didn't understand what you were proposing, because of the confusion over "If the two coins show the same face" versus "If the two coins are not both heads." Now that it's clear it should be "if the two coins are not both heads" throughout, and after rereading, I now see your argument.

The problem with your argument is that you still have "today" smuggled in: one of your state components is which way the nickel is lying "today." That changes over the course of the time period we ... (read more)

Your whole analysis rests on the idea that "it is Monday" is a legitimate proposition. I've responded to this many other places in the comments, so I'll just say here that a legitimate proposition needs to maintain the same truth value throughout the entire analysis (Sunday, Monday, Tuesday, and Wednesday). Otherwise it's a predicate. The point of introducing R(y,d) is that it's as close as we can get to what you want "it is Monday" to mean.

1Jeff Jo
Well, I never checked back to see replies, and just tripped back across this. The error made by halfers is in thinking "the entire analysis" spans four days. Beauty is asked for her assessment, based on her current state of knowledge, that the coin landed Heads. In this state of knowledge, the truth value of the proposition "it is Monday" does not change. But there is another easy way to find the answer, that satisfies your criterion. Use four Beauties to create an isomorphic problem. Each will be told all of the details on Sunday; that each will be wakened at least once, and maybe twice, over the next two days based on the same coin flip and the day. But only three will be wakened on each day. Each is assigned a different combination of a coin face, and a day, for the circumstances where she will not be wakened. That is, {H,Mon}, {T,Mon}, {H,Tue}, and {T,Tue}. On each of the two days during the experiment, each awake Beauty is asked for the probability that she will be wakened only once. Note that the truth value of this proposition is the same throughout the experiment. It is only the information a Beauty has that changes. On Sunday or Wednesday, there is no additional information and the answer is 1/2. On Monday or Tuesday, an awake Beauty knows that there are three awake Beauties, that the proposition is true for exactly one of them, and that there is no reason for any individual Beauty to be more, or less, likely than the others to be that one. The answer with this knowledge is 1/3.
Are you really claiming that the statement "today is Monday" is not a sentence that is either true or false?

Yes. It does not have a simple true/false truth value. Since it is sometimes true and sometimes false, its truth value is a function from time to {true, false}. That makes it a predicate, not a proposition.

Or are you simply ignoring the fact that the frame of reference, within which Beauty is asked to assess the proposition "The coin lands Heads," is a fixed moment in time?

It is not a fixed moment in time; if it were, the SB probl... (read more),,,,,,,,,

1Jeff Jo
It most certainly does. It is true on Monday when Beauty is awake, and false on Sunday Night, on Tuesday whether or not Beauty is awake, and on Wednesday. A better random variable might be D, which takes values in {0,1,2,3} for these four days. What you refuse to deal with, is that its uninformed distribution depends on the stage of the experiment: {1,0,0,0} when she knows it is Sunday, {0,1/2,1/2,0} when she is awakened but not told the experiment is over, and {0,0,0,1} when she is told it is over. Or you could just recognize that the probability space when she awakes is not derived by removing outcomes from Sunday's. Which is how conventional problems in conditional probability work. That a new element of randomness is introduced by the procedures you use in steps 2 and 3. To illustrate this without obfuscation, ignore the amnesia part. Wake Beauty just once. It can happen any day during the rest of the week, as determined by a roll of a six-sided die. When she is awake, "Die lands 3" is just as valid a proposition - in fact, the same proposition - as "today is Wednesday." It has probability 1/6. If you add in the amnesia drug, and roll two dice (re-rolling if you get doubles so that you wake her on two random days), the probability for "a die lands 3" is 1/3, but for "today is Wednesday" it is 1/6. The proposition "coin lands heads" is sometimes true, and sometimes false, as well. In fact, you have difficulty expressing the tense of the statement for that very reason. But, it is a function of the parameters that define how you flip a coin: start position, force applied, etc. What you refuse to deal with, is that in this odd experiment, the time parameter Day is also one of the independent parameters that defines the randomness of Beauty's situation, and not one that makes Monday's state predicated on Sunday's. By being asked about the proposition H, Beauty knows that she is in either step 2 or step 3 of your experiment. This establishes a fixed value of th
By bayes rule, Pr (H | M) * Pr(X2 |H, M) / Pr(X2 |M) = Pr(H∣X2, M), which is not the same quantity you claimed to compute Pr(H∣X2).

That's a typo. I meant to write , not .

Second, the dismissal of betting arguments is strange.

I'll have more to say soon about what I think is the correct betting argument. Until then, see my comment in reply to Radford Neal about disagreement on how to apply betting arguments to this problem.

“probability theory is logically prior to decision theory.” Yes, this is the common view because probability
... (read more),,,,,,,,
3Jeff Jo
You said: "The standard textbook definition of a proposition is a sentence that has a truth value of either true or false. This is correct. And when a well-defined truth value is not known to an observer, the standard textbook definition of a probability (or confidence) for the proposition, is that there is a probability P that it is "true" and a probability 1-P that it is "false." For example, if I flip a coin but keep it hidden from you, the statement "The coin shows Heads on the face-up side" fits your definition of a proposition. But since you do not know whether it is true or false, you can assign a 50% probability to the result where "It shows Heads" is true, and a 50% probability the event where "it shows Heads" is false. This entire debate can be reduced to you confusing a truth value, with the probability of that truth value. * On Monday Beauty is awakened. While awake she obtains no information that would help her infer the day of the week. Later in the day she is put to sleep again. During this part of the experiment, the statement "today is Monday" has the truth value "true", and does not have the truth value "false." So by your definition, it is a valid proposition. But Beauty does not know that it is "true." * On Tuesday the experimenters flip a fair coin. If it lands Tails, Beauty is administered a drug that erases her memory of the Monday awakening, and step 2 is repeated. During this part of the experiment, the statement "today is Monday" has the truth value "false", and does not have the truth value "true." So by your definition, it is a valid proposition. But Beauty dos not know that it is "false." In either case, the statement "today is Monday" is a valid proposition by the standard definition you use. What you refuse to acknowledge, is that it is also a proposition that Beauty can treat as "true" or "false" with probabilities P and 1-P.
2agilecaveman
if the is indeed a typo, please correct it at the top level post and link to this comment. The broader point is that the interpretation of P( H | X2, M) is probability of heads conditioned on Monday and X2, and P (H |X2) is probability of heads conditioned on X2. In the later paragraphs, you seem to use the second interpretation. In fact, It seems your whole post's argument and "solution" rests on this typo. Dismissing betting arguments is very reminiscent of dismissing one-boxing in Newcomb's because one defines "CDT" as rational. The point of probability theory is to be helpful in constructing rational agents. If the agents that your probability theory leads to are not winning bets with the information given to them by said theory, the theory has questionable usefulness. Just to clarify, I have read Probability, the Logic of science, Bostrom's and Armstrong's papers on this. I have also read  https://meaningness.com/probability-and-logic. The question of the relationship of probability and logic is not clear cut. And as Armstrong has pointed out, decisions can be more easily determined than probabilities, which means it's possible the ideal relationship between decision theory and probability theory is not clear cut, but that's a broader philosophical point that needs a top level post. In the meantime, Fix Your Math!

Yes, there is. I'll be writing about that soon.

Hmmm. I would be responsive to "that's a slur," but the follow-on "the preferred term is X" raises my hackles. The former is merely a request to be polite; the latter feels like someone is trying to dictate vocabulary to me.

4tcheasdfjkl
I think it's much better to offer a replacement than not.

None of this is about "versions of me"; it's about identifying what information you actually have and using that to make inferences. If the FNIC approach is wrong, then tell me what how Beauty's actual state of information differs from what is used in the analysis; don't just say, "it seems really odd."

As I understand it, FDT says that you go with the algorithm that maximizes your expected utility. That algorithm is the one that bets on 1:2 odds, using the fact that you will bet twice, with the same outcome each time, if the coin comes up tails.

1Lukas Finnveden
I agree with that description of FDT. And looking at the experiment from the outside, betting at 1:2 odds is the algorithm that maximizes utility, since heads and tails have equal probabilities. But once you're in the experiment, tails have twice the probability of heads (according to your updating procedure) and FDT cares twice as much about the worlds in which tails happens, thus recommending 1:4 odds.

The standard textbook definition of a proposition is this:

A proposition is a sentence that is either true or false. If a proposition is true, we say that its truth value is "true," and if a proposition is false, we say that its truth value is "false."

(Adapted from https://www.cs.utexas.edu/~schrum2/cs301k/lec/topic01-propLogic.pdf.)

The problem with a statement whose truth varies with time is that it does not have a simple true/false truth value; instead, its truth value is a function from time to the set .

As for the rest of ... (read more)

1Jeff Jo
(Sorry about the typo - I waffled between several isomorphic versions. The one I ultimately chose should have "both showed Heads.") In the OP, you said: Now you say: Are you really claiming that the statement "today is Monday" is not a sentence that is either true or false? That it is not "mutually exclusive" with "today is Tuesday"? Or are you simply ignoring the fact that the frame of reference, within which Beauty is asked to assess the proposition "The coin lands Heads," is a fixed moment in time? That she is asked to evaluate it at the current moment, and not over the entire time frame of the experiment? Let me insert an example here, to illustrate the problem with your assertion about functions. One half of a hidden, spinning disk is white; the other, black. It spins at a constant rate V, but you don't know its position at any previous time. There is a sensor aligned along its rim that can detect the color at the point in time when you press a button. You are asked to assess the probability of the proposition W, that the sensor will detect "white" when you first press the button. This is a valid proposition, even though it varies with time. It is valid because it doesn't ask you to evaluate the proposition at every time, but at a fixed point in time. It does have a simple true/false truth value if you are asked to evaluate it at fixed point in time. Your assertion applies to functions where every value of the dependent variable are considered to be "true" simultaneously. I did give you the math, but I'll repeat it in a slightly different form. Consider the point in time just before (A) in my version, when Beauty is awake and could be interviewed, or (B) in yours, when Beauty could be awakened. At this point in time, there are two valid-by-your-definition propositions: H, the proposition that "the coin lands Heads" and M, the proposition that "today is Monday." Each is asking about a specific moment in time, so your unsupported assertion that we need to

In regards to betting arguments:

1. Traditional CDT (causal decision theory) breaks down in unusual situations. The standard example is the Newcomb Problem, and various alternatives have been proposed, such as Functional Decision Theory. The Sleeping Beauty problem presents another highly unusual situation that should make one wary of betting arguments.

2. There is disagreement as to how to apply decision theory to the SB problem. The usual thirder betting argument assumes that SB fails to realize that she is going to both make the same decision and get th... (read more),,,,,

for decision-theoretic purposes you want the probability to be 1/3 as soon as the AI wakes up on Monday/Tuesday.

That is based on a flawed decision analysis that fails to account for the fact that Beauty will make the same choice, with the same outcome, on both Monday and Tuesday (it treats the outcomes on those two days as independent).

1Dacyn
So you want to use FDT, not CDT. But if the additional data of which direction the fly is going isn't used in the decision-theoretic computation, then Beauty will make the same choice on both days regardless of whether she has seen the fly's direction or not. So according to this analysis the probability still needs to be 1/2 after she has seen the fly.
the mismatch with frequency

There are no frequencies in this problem; it is a one-time experiment.

Probability is logically prior to frequency estimation

That's not what I said; I said that probability theory is logically prior to decision theory.

If your "probability" has zero application because your decision theory uses "likeliness weights" calculated an entirely different way, I think something has gone very wrong.

Yes; what's gone wrong is that you're misapplying the decision theory, or your decision theory itself breaks ... (read more)

3Charlie Steiner
One can do things multiple times. I tried to get at this in the big long paragraph of "'Monday' is an abstraction, not a fundamental." There is no such thing as a measurement of absolute time. When someone says "no, I mean to refer to the real Monday," they are generating an abstract model of the world and then making their probability distributions within that model. But then there still have to be rules that cash your nice absolute-time model out into yucky relative-time actual observables. It's like Solomonoff induction. You have a series of data, and you make predictions about future data. Everything else is window dressing (sort of). But it's not so bad. You can have whatever abstractions you want, as long as they cash out to the right thing. You don't need time to actually pass within predicate logic. You just need to model the passage of time and then cash the results out. It's also like how probability distributions are not about what reality is, they are about your knowledge of reality. "It is Monday" changes truth value depending on the external world. But P(It is Monday | Information)=0.9 is a perfectly good piece of classical logic. In fact, this exactly the same as how you can treat P(H)=0.5, even though classical propositions do not change their truth value when you flip over a coin. I dunno, putting it that way makes it sound simple. I still think there's something important in my weirder rambling - but then, I would.

Classical propositions are simply true or false, although you may not know which. They do not change from false to true or vice versa, and classical logic is grounded in this property. "Propositions" such as "today is Monday" are true at some times and false at other times, and hence are not propositions of classical logic.

If you want a "proposition" that depends on time or location, then what you need is a predicate---essentially, a template that yields different specific propositions depending on what values you substitute i... (read more),,,,

7AlexMennen
In any particular structure, each proposition is simply true or false. But one proposition can be true in some structure and false in another structure. The universe could instantiate many structures, with non-indexical terms being interpreted the same way in each of them, but indexical terms being interpreted differently. Then sentences not containing indexical terms would have the same truth value in each of these structures, and sentences containing indexical terms would not. None of this contradicts using classical logic to reason about each of these structures. I'm sympathetic to the notion that indexical language might not be meaningful, but it does not conflict with classical logic.
5Dacyn
That's not how I understand the term "classical logic". Can you point to some standard reference that agrees with what you are saying? I skimmed the SEP article I linked to and couldn't find anything similar. You run into the same problems with any sort of pronouns or context-dependent reference, and as far as I know most philosophers consider statements like "the thing that I'm pointing at right now is red" to be perfectly valid in classical logic. The main point of classical logic is that it has a system of deduction based on axioms and inference rules. Are you saying that you think these don't apply in the case of centered propositions? Does modus ponens or the law of the excluded middle not work for some reason? If not, I'm not sure why it matters whether centered propositions are really a part of "classical logic" or not -- you can still use all the same tools on them as you can use for classical logic. Finally, if you accept the MWI then every statement about the physical world is a centered proposition, because it is a statement about the particular Everett branch or Tegmark universe that you are currently in. So classical logic would be pretty weak if it couldn't handle centered propositions!
It's a useless and misleading modeling choice to condition on irrelevant data

Strictly speaking, you should always condition on all data you have available. Calling some data irrelevant is just a shorthand for saying that conditioning on it changes nothing, i.e., . If you can show that conditioning on does change the probability of interest---as my calculation did in fact show---then this means that is in fact relevant information, regardless of what your intuition suggests.

even worse to condition on the assumption the unstated
... (read more),,,

There are several misconceptions here:

1. Non-indexical conditioning is not "a way to do probability theory"; it is just a policy of not throwing out any data, even data that appears irrelevant.

2. No, you do not usually do probability theory on centered propositions such as "today is Monday", as they are not legitimate propositions in classical logic. The propositions of classical logic are timeless -- they are true, or they are false, but they do not change from one to the other.

3. Nowhere in the analysis do I treat a data point as &qu... (read more),,,,,,,,

1Dacyn
I responded to #2 below, and #1 seems to be just a restatement of your other points, so I'll respond to #3 here. You seem to be taking what I wrote a little too literally. It looks like you want the proposition Sleeping Beauty conditions on to be "on some day, Sleeping Beauty has received / is receiving / will receive the data X", where X is the data that she has just received. (If this is not what you think she should condition on, then I think you should try to write the proposition you think she should condition on, using English and not mathematical symbols.) This proposition doesn't have any reference to "a version of me", but it seems to me to be morally the same as what I wrote (and in particular, I still think that it is really odd to say that that it is the proposition she should condition on, and that more motivation is needed for it).
8Wei Dai
This confuses me. Dacyn's “There exists a version of me which has received this data as well as all of the prior data I have received” seems equivalent to Neal's "I will here consider what happens if you ignore such indexical information, conditioning only on the fact that someone in the universe with your memories exists. I refer to this procedure as “Full Non-indexical Conditioning” (FNC)." (Section 2.3 of Neal2007) Do you think Dacyn is saying something different from Neal? Or that you are saying something different from both Dacyn and Neal? Or something else?
Load More