They don't. To get the probabilities about something occuring in our universe, you need to get the information about our universe first. Solomonoff Induction tells you how to do that, in a random universe. After you get enough evidence to understand the universe, only then you start getting good results.
Yes, but we already have lots of information about our universe. So, making use of all that, if we could start using SI to, say, predict the weather, would its predictions be well-calibrated? (They should be - modern weather predictions are already wel...
You quoted me
"the theory seems to predict that possible (evidence-compatible) events or states in the universe will occur in exact or fairly exact proportion to their relative complexities as measured in bits [...] if I am predicting between 2 (evidence-compatible) possibilities, and one is twice as information-complex as the other, then it should actually occur 1/3 of the time"
then replied
"Let's suppose that there are two hypotheses H1 and H2, each of them predicting exactly the same events, except that H2 is one bit longer and therefore ha...
This seems reasonable - it basically makes use of the fact that most statements are wrong, therefore adding a given statement whose truth-value is as-yet-unknown is likely to be wrong.
However, that's vague. It supports Occam's Razor pretty well, but does it also offer good evidence that that those likelihoods will manifest in real-world probabilities IN EXACT PROPORTION to the bit-lengths of their inputs? That is a much more precise claim! (For convenience I am ignoring the problem of multiple algorithms where hypotheses have different bit-lengths.)
Yes, that was the post I read that generated my current line of questioning.
My reply to Viliam_Bur was phrased in terms of probabilities in a single universe, while your post here is in terms of mathematically possible universes. Let me try to rephrase my point to him in many-worlds language. This is not how I originally thought of the question, though, so I may end up a little muddled in translation.
Taking your original example, where half of the Mathematically Possible Universes start with 1, and the other half with 0. It is certainly possible to imag...
Thank you for your reply. It does clear up some of the virtues of SI, especially when used to generate priors absent any evidence. However, as I understand it, SI does take into account evidence - one removes all the possibilities incompatible with the evidence, then renormalizes the probablities of the remaining possibilities. Right?
If so, one could still ask - after taking account of all available evidence - is SI then well-calibrated? (At some point it should be well-calibrated, right? More calibrated than human beings. Otherwise, how is it useful...
Hi, my name is Jason, this is my first post. I have recently been reading about 2 subjects here, Calibration and Solomoff Induction; reading them together has given me the following question:
How well-calibrated would Solomonoff Induction be if it could actually be calculated?
That is to say, if one generated priors on a whole bunch of questions based on information complexity measured in bits - if you took all the hypotheses that were measured at 10% likely - would 10% of those actually turn out to be correct?
I don't immediately see why Solomonoff Inductio...
To my mind all such questions are related to arguments about solipcism, i.e. the notion that even other humans don't, or may not, have minds/consciousness/qualia. The basic argument is that I can only see behavior (not mind) in anyone other than myself. Most everyone rejects solipsism, but I don't know if there have actually many very good arguments against it, except that it is morally unappealing (if anyone know of any please point them out). I think the same questions hold regarding emulations, only even more so (at least with other humans we know th... (read more)