I found this post to be a clear and reasonable-sounding articulation of one of the main arguments for there being catastrophic risk from AI development. It helped me with my own thinking to an extent. I think it has a lot of shareability value.
I think https://www.alignmentforum.org/posts/TATWqHvxKEpL34yKz/intelligence-or-evolution is somewhat related in case you haven't seen it.
A possibly helpful - because starker - hypothetical training approach you could try for thinking about these arguments is make an instance of the imitatee that has all their (at least cognitive) actions sped up by some large factor (e.g. 100x), e.g., via brain emulation (or just "by magic" for the purpose of the hypothetical).
It means f(x) = 1 is true for some particular x's, e.g., f(x_1) = 1 and f(x_2) = 1, there are distinct mechanisms for why f(x_1) = 1 compared to why f(x_2) = 1, and there's no efficient discriminator that can take two instances f(x_1) = 1 and f(x_2) = 1 and tell you whether they are due to the same mechanism or not.
(Bold direct claims, not super confident - criticism welcome.)
The approach to ELK in this post is unfalsifiable.
A counterexample to the approach would need to be a test-time situation in which:
Points 2 and 3 are in direct conflict: the predictor knowing that the diamond is unsafe rules out the usual explanation for the safe-looking predic...
“We can compute the probability that a cell is alive at timestep 1 if each of it and each of its 8 neighbors is alive independently with probability 10% at timestep 0.”
we the readers (or I guess specifically the heuristic argument itself) can do this, but the “scientists” cannot, because the
“scientists don’t know how the game of life works”.
Do the scientists ever need to know how the game of life works, or can the heuristic arguments they find remain entirely opaque?
Another thing confusing to me along these lines:
...“for example they may have noti
They have a strong belief that in order to do good alignment research, you need to be good at “consequentialist reasoning,” i.e. model-based planning, that allows creatively figuring out paths to achieve goals.
I think this is a misunderstanding, and that approximately zero MIRI-adjacent researchers hold this belief (that good alignment research must be the product of good consequentialist reasoning). What seems more true to me is that they believe that better understanding consequentialist reasoning -- e.g., where to expect it to be instantiated, what form it takes, how/why it "works" -- is potentially highly relevant to alignment.
...We expect an explanation in terms of the weights of the model and the properties of the input distribution.
We have a model that predicts a very specific pattern of observations, corresponding to “the diamond remains in the vault.” We have a mechanistic explanation π for how those correlations arise from the structure of the model.
Now suppose we are given a new input on which our model predicts that the diamond will appear to remain in the vault. We’d like to ask: in this case, does the diamond appear to remain in the vault for the normal reason
Partitions (of some underlying set) can be thought of as variables like this:
Another way of looking at it: say we're thinking of a variable as a function from the underlying set to 's domain . Then we can equivalently think of as the partition of with (up to) ...
I'll take a stab at answering the questions for myself (fairly quick takes):
I think Dan's point is good: that the weights don't change, and the activations are reset between runs, so the same input (including rng) always produces the same output.
I agree with you that the weights and activations encode knowledge, but Dan's point is still a limit on learning.
I think there are two options for where learning may be happening under these conditions:
I agree with this prediction directionally, but not as strongly.
I'd prefer a version where we have a separate empirical reason to believe that the training and finetuning approaches used can support transfer of something (e.g., some capability), to distinguish goal-not-sticky from nothing-is-sticky.
Hm, no, not really.
OK let's start here then. If what I really want is an AI that plays tic-tac-toe (TTT) in the real world well, what exactly is wrong with saying the reward function I described above captures what I really want?
There are several claims which are not true about this function:
Neither of those claims seemed right to me. Can you say what the type signature of our desires (e.g., for good classification over grayscale images) is? [I presume the problem you're getting at isn't as simple as wanting desires to look like (image, digit-label, goodness) tuples as opposed to(image, correct digit-label) tuples.]
Could this be accomplished with literally zero effort from the post-writers? The tasks of identifying which posts are arXiv-worthy, formatting for submission, and doing the submission all seem like they could be done by entities other than the author. The only issue might be in associating the arXiv submitter account with the right person.
What about the real world is important here? The first thing you could try is tic-tac-toe in the real world (i.e., the same scenario as above but don't think of a Platonic game but a real world implementation). Does that still seem fine?
Another aspect of the real world is that we don't necessarily have compact specifications of what we want. Consider the (Platonic) function that assigns to every 96x96 grayscale (8 bits per pixel) image a label from {0, 1, ..., 9, X} and correctly labels unambiguous images of digits (with X for the non-digit or ambiguous im...
Given a utility function ...
I might have missed it, but where do you get this utility function from ultimately? It looked like you were trying to simultaneously infer the policy and utility function of the operator. This sounds like it might run afoul of Armstrong's work, which shows that you can't be sure to split out the correctly from the policy when doing IRL (with potentially imperfect agents, like humans) without more assumptions than a simplicity prior.
Sure, one concrete example is the reward function in the tic-tac-toe environment (from X's perspective) that returns -1 when the game is over and O has won, returns +1 when the game is over and X has won, and returns 0 on every other turn (including a game over draw), presuming what I really want is for X to win in as few turns as possible.
I can probably illustrate something outside of such a clean game context too, but I'm curious what your response to this one is first, and to make sure this example is as clear as it needs to be.
I agree that humans satisfying the conditions of claim 1 is an argument in favour of it being possible to build machines that do the same. A couple of points: I think the threat model would posit the core of general intelligence as the reason both why humans can do these things and why the first AGI we build might also do these things. Claim 1 should perhaps be more clear that it's not just saying such an AI design is possible, but that it's likely to be found and built.
The first thing I imagine is that nobody asks those questions. But let's set that aside.
This seems unlikely to me. I.e., I expect people to ask these questions. It would be nice to see the version of the OP that takes this most seriously, i.e., expect people to make a non-naive safety effort (trying to prevent AI takeover) focused on scalable oversight as the primary method. Because right now it's hard to disentangle your strong arguments against scalable oversight from weak arguments against straw scalable oversight.
Because doing something reliably in the world is easy to operationalise with feedback mechanisms, but us being happy with the outcomes is not.
Getting some feedback mechanism (including "what do human raters think of this?" but also mundane things like "what does this sensor report in this simulation or test run?") to reliably output high scores typically requires intelligence/capability. Optimising for that is where the AI's ability to get stuff done in the world comes from. The problem is genuinely capturing "will we be happy with the outcomes?" with such a mechanism.
The AI wasn't trained to translate the literal semantics of questions into a query to its own internal world model and then translate the result back to human language; humans have no clue how to train such a thing.
This sounds pretty close to what ELK is for. And I do expect if there is a solution found for ELK for people to actually use it. Do you? (We can argue separately about whether a solution is likely to be found.)
If our alignment training data correctly favors aligned behavior over unaligned behavior, then we have solved outer alignment.
I'm curious to understand what this means, what "data favoring aligned behavior" means particularly. I'll take for granted as background that there are some policies that are good ("aligned" and capable) and some that are bad. I see two problems with the concept of data favoring a certain kind of policy:
Straw person: We haven't found any feedback producer whose outputs are safe to maximise. We strongly suspect there isn't one.
Ramana's gloss of TurnTrout: But AIs don't maximise their feedback. The feedback is just input to the algorithm that shapes the AI's cognition. This cognition may then go on to in effect "have a world model" and "pursue something" in the real world (as viewed through its world model). But its world model might not even contain the feedback producer, in which case it won't be pursuing high feedback. (Also, it might just do something e...
For 2, I think a lot of it is finding the "sharp left turn" idea unlikely. I think trying to get agreement on that question would be valuable.
For 4, some of the arguments for it in this post (and comments) may help.
For 3, I'd be interested in there being some more investigation into and explanation of what "interpretability" is supposed to achieve (ideally with some technical desiderata). I think this might end up looking like agency foundations if done right.
For example, I'm particularly interested in how "interpretability" is supposed to work if, in some...
The desiderata you mentioned:
It seems that RRM/Debate somewhat addresses both of these, and path-specific objectives is mainly aimed at addressing issue 2. I think (part of) John's point is that RRM/Debate don't address issue 1 very well, because we don't have very good or robust processes for judging the various ways we could construct or improve these schemes. Debate relies on a trustworthy/reliable judge at the end of the day, and we might not actually have that.
I think what you say makes sense, but to be clear the argument does not consider those things as the optimisation target but rather considers fitness or reproductive capacity as the optimisation target. (A reasonable counterargument is that the analogy doesn't hold up because fitness-as-optimisation-target isn't a good way to characterise evolution as an optimiser.)
Let me know when you can receive donations via a UK charity.