Not exactly. By writing down a density matrix you specify a special basis (via the eigenvectors) and cannot change this basis and still have some meaning. Eliezer, back in the beginning of the series you wrote about classical phase space and that it is an optional addition to classical mechanics, while QM inherently takes place in configuration space. Well, the density matrix is sort of the same addition to QM. Whether we have (in some basis) a simple state or a linear combination thereof is a physical fact that does not say anything about our beliefs. But...
You actually get neater numbers if you take 0°, 30° and 60°. Then the probabilities are 1/8,1/8 and 3/8. :)
Hm, just read the article again and saw that many of this was already explained there. But the essential point is that although the full information of a system is given by the amplitude distribution over all possible configurations, this information is not accessible to another system. When we try to couple the system to another (for example, by copying the state), this only respects the pure 'classical' states as described above. Thus it is possible to ask the question 'how much have these two states in common', where one classical state compared with it...
First of all - great sequence! I had a lot of 'I see!'-moments reading it. I study physics, but often the clear picture gets lost in the standard approach and one is left with a lot of calculating techniques without any intuitive grasp of the subject. After reading this I became very fond of tutoring the course on quantum mechanics and always tried to give some deeper insight (many of which was taken from here) in addition to just explaining the exercises. If I am correct, the world mangling theory just tries to explain some anomalies, but the rule of squa...
That gave me, if I am not mistaken, the last piece of the puzzle. Let's just take the naive definition of probability - the relative frequency of outcomes as N goes to infinity. Now prepare N systems independently in the state a|0>+b|1>. Now measure one after another - couple the measurement device to the system. At first we have (a|0>+b|1>)^N |0>. Now the first one is measured: (a|0>+b|1>)^(N-1) (a|0,0>+b|1,1>) where the number after the comma denotes the state of the measuring device, which just counts the number of measured ... (read more)