"
This result dissolves the Fermi paradox, and in doing so removes any need to invoke speculative mechanisms by which civilizations would inevitably fail to have observable effects upon the universe.
I find that this conclusion does not follow from the main result of the paper .... It is quite possible that in our universe there is a Great Filter "by which civilizations would inevitably fail to have observable effects upon the universe," because, for example one specific parameter has the value that is many orders of magnitude lower th...
That might explain why many individual researchers failed, but it can't be common enough to filter out everyone thinking about the problem except SDO. To see how many researchers we would expect to find this solution, we must multiply our estimates of the number thinking about it, by the fraction of those who know about the correct statistical technique of using distributions, multiplied by the odds they would apply this technique, do it correctly, and consider the result worth publishing.
N=R*f(s)*f(a)*f(c)*f(p)
Using personal estimates I obtained a result of N=2.998, close to the observed number of publishers of the paper
Tut tut tut! Instead of just multiplying together those factors, you need to consider the probability distribution on each one and estimate the resulting probability distribution of N. Most of the distribution will probably have smaller N than your point estimate.
[:-)]
Also New Zealand, which has a handful of new cases trickling in from arrivals, but approximately zero community transmission due to the managed quarantine at the border. Even if this new strain has the increased transmissibility I expect NZ to not be anywhere near overwhelmed.