bigjeff5
bigjeff5 has not written any posts yet.

The reason Person A in scenario 2 has the intuition that Person B is very wrong is because there are dozens, if not hundreds of examples where people claimed no vulnerabilities and were proven wrong. Usually spectacularly so, and often nearly immediately. Consider the fact that the most robust software developed by the most wealthy and highly motivated companies in the world, who employ vast teams of talented software engineers, have monthly patch schedules to fix their constant stream vulnerabilities, and I think it's pretty easy to immediately discount anybody's claim of software perfection without requiring any further evidence.
All the evidence Person A needs is the complete and utter lack of anybody... (read more)
That was four years ago, but I'm pretty sure I was using hyperbole. Pros don't bluff often, and when they do they are only expecting to break even, but I doubt it's as low as 2% (the bluff will fail half the time).
I'd also put in a caveat that the best hand wins among hands that make it all the way to the river. There are plenty of times where a horrible hand like a 6 2, which is an instant fold if you respect the skills of your fellow players, ends up hitting a straight by the river and being the best hand but obviously didn't win. Certainly more often than 1%, and there are plenty of better hands that you still almost always fold pre-flop that are going to hit more often.
So, at best it was poorly stated (i.e. hyperbole without saying so), at worst it's just wrong.
Pretty much.
At this point you have to ask what you mean by "theory" and "learning".
The original method of learning was "those that did it right didn't die" - i.e. natural selection. Those that didn't die have a pattern of behavior (thanks to a random mutation) that didn't exist in previous generations, which makes them more successful gene spreaders, which passes that information on to future generations.
There is nothing in there that requires one to ask any questions at all. However, considering that there is information gained based on past experience, I think the definition of learning could be stretched to cover it. Obviously there is no individual learning, but... (read more)
I see that now, it took a LOT for me to get it for some reason.
Wow.
I've seen that same explanation at least five times and it didn't click until just now. You can't distinguish between the two on tuesday, so you can only count it once for the pair.
Which means the article I said was wrong was absolutely right, and if you were told that, say one boy was born on January 17th, the chances of both being born on the same day are 1-(364/365)^2 (ignoring leap years), which gives a final probability of roughly 49.46% that both are boys.
Thanks for your patience!
ETA: I also think I see where I'm going wrong with the terminology - sampling vs not sampling, but I'm not 100% there yet.
How can that be? There is a 1/7 chance that one of the two is born on Tuesday, and there is a 1/7 chance that the other is born on Tuesday. 1/7 + 1/7 is 2/7.
There is also a 1/49 chance that both are born on tuesday, but how does that subtract from the other two numbers? It doesn't change the probability that either of them are born on Tuesday, and both of those probabilities add.
This statement leads me to believe you are still confused. Do you agree that if I know a family has two kids, I knock on the door and a boy answers and says "I was born on a Tuesday," that the probability of the second kid being a girl is 1/2? And in this case, Tuesday is irrelevant? (This the wikipedia called "sampling")
I agree with this.
Do you agree that if, instead, the parents give you the information "one of my two kids is a boy born on a Tuesday", that this is a different sort of information, information about the set of their children, and not about a specific child?
I agree with... (read more)
The answer I'm supporting is based on flat priors, not sampling. I'm saying there are two possible Boy/Boy combinations, not one, and therefore it takes up half the probability space, not 1/3.
Sampling to the "Boy on Tuesday" problem gives roughly 48% (as per the original article), not 50%.
We are simply told that the man has a boy who was born on tuesday. We aren't told how he chose that boy, whether he's older or younger, etc. Therefore we have four possibilites, like I outlined above.
Is my analysis that the possibilities are Boy (Tu) /Girl, Girl / Boy (Tu), Boy (Tu)/Boy, Boy/Boy (Tu) correct?
If so, is not the probability for... (read more)
This is exactly right. To put it more succinctly: Memory corruption is a known vector for exploitation, therefore any bug that potentially leads to memory corruption also has the potential to be a security vulnerability. Thus memory corruption should be treated with similar care as a security vulnerability.