christopheg
christopheg has not written any posts yet.

christopheg has not written any posts yet.

Who says fruit is to be prefered to foliage ?
I often wonder about something along this line when speaking of education. Are students learning for getting a job (fruit) or for culture (foliage) ? Choosing between one or the other should it be the choice of the student or of the society ? I believe the most common answer is : we study for job and the choice is made by society. But I, for one, cannot so easily dismiss the question. It has too much to do with meaning of life: are people living to work/act or to understand/love.
That's obviously not the only way to interpret this quote, the obvious one would probably be a simple statement that knowledge can be flashy but still sterile. Anyway, as most good quotes it is ambiguous, henceforth may lead to fruitful thinking.
A true Omega needs to make both P(box B full | take one box) and P(box B empty | take both boxes) high. The proposed scheme ensures that P(box B full | habitual one-boxer) and P(box B empty | habitual two-boxer) are high, which is not quite the same.
If I understand correctly the distinction you're making between habitual one boxer and take one box the first kind would be about the past player history and the other one about the future. If so I guess you are right. I'm indeed using the past to make my prediction, as using the future is beyond my reach.
But I believe you're missing... (read more)
It's conforting sometimes to read from someone else that rationality is not the looser's way, and arguably more so for Prisonner's Dilemma than Newcomb's if your consider the current state of our planet and the tragedy of commons.
I'm writing this because I believe I suceeded writing a computer program (it is so simple I can't call it an AI) able to actually simulate Omega in a Newcomb game. What I describe below may look like an iterated Newcomb's problem. But I claim it is not so and will explain why.
When using my program the human player will actually be facing some high accuracy predictor and it will be true.
Obviously there... (read 1694 more words →)
I don't know if you have seen it, but I have posted an actual program playing Newcomb's game. As far as I understand what I have done, this is not an Iterated Newcomb's problem, but a single shot one. You should also notice that the calibration phase does not returns output to the player (well, I added some showing of reached accuracy, but this is not necessary).
If I didn't overviewed some detail, the predictor accuracy is currently tuned at above 90% but any level of accuracy is reachable.
As I explained yesterday, the key point was to run some "calibration" phase before running the actual game. To make the calibration usefull I... (read more)
I posted a possible program doing what I describe in another comment. The trick as expected is that it's easier to change the human player understanding of the nature of omega to reach the desired predictability. In other words : you just remove human free will (and running my program the player learn very quickly that is in his best interrest), then you play. What is interresting is that the only way compatible with Newcomb's problem description to remove his free will is to make it a one-boxer. The incentive to make it a two-boxer would be to exhibit a bad predictor and that's not compatible with Newcomb's problem.
Here is an actual program (written in python) implementing the described experiment. It has two stages. The first part is just calibration intending to find out if the player is one boxing or two boxing. The second is a straightforward non iterated Newcomb problem. Some randomness is used to avoid the player to exactly know when calibration stops and test begin, but calibration part does not care at all if it will predict the player is a one boxer or a two boxer it is just intended to create an actual predictor behaving as described in Newcomb's.
print "I will run some trial games (at least 5) to calibrate the predictor."
print ("As soon... (read 871 more words →)If my program runs as long as wished accuracy is nor reached it can reach any accuracy. Truly random numbers are also expected to deviate toward extremes sometimes in the long run (if they do not behave like that they are not random). As it is very rare events, against random players the expected accuracy would certainly never be reached in a human life.
Why I claim is the "calibration phase" described above takes place before Newcomb's problem. When the actual game starts the situation described in Newcomb's problem is exactly what is reached. THe description of the calibration phase could even be provided to the player to convince him Omega prediction will... (read more)
As proposed, the idea is to run the program in "test mode". To simulate the super-being Omenga we give it the opportunity to decide when game stops being a simulation (predictor calibration) and start being the "real game". To be fair, this change (or the rules governing it) will be communicated to some external judge before the actual "real play". But it will not be communicated to player (or obviously it would break any calibration accuracy). A possible rule could be to start the real game when some fixed accuracy is reached (something like prediction is right 99% of the time), or it could also be a fixed number of calibration games.
Writing... (read more)
I do not see your reasoning here ? What I'm proposing is not letting know when practising round stops and real round starts. That means indeed that one boxer would get higher rewards in both practice and real round, and that's why I believe it's an argument for one boxing.
My proposal for "simulating" Newcomb's may not be accurate (and it's certainly not perfect) but you can't conclude that based on the (projected) outcome of the experiment disagreeing with wath you expect.
Thanks for fixing my broken english.
There is actually several quotes expressing the same idea in different Terry Pratchett's book. Everyone of them much better than what I could remember. I dug these two ones:
In Wyrd Sisters you have (Granny Weatherwas speaking): “The reward you get for digging holes is a bigger shovel.”
And another one from "Carpe Jugulum" that I like even better (also Granny Weatherwax speaking): "The reward for toil had been more toil. If you dug the best ditches, they gave you a bigger shovel."