In the early 1980s Douglas Lenat wrote EURISKO, a program Eliezer called "[maybe] the most sophisticated self-improving AI ever built". The program reportedly had some high-profile successes in various domains, like becoming world champion at a certain wargame or designing good integrated circuits.
Despite requests Lenat never released the source code. You can download an introductory paper: "Why AM and EURISKO appear to work" [PDF]. Honestly, reading it leaves a programmer still mystified about the internal workings of the AI: for example, what does the main loop look like? Researchers supposedly answered such questions in a more detailed publication, "EURISKO: A program that learns new heuristics and domain concepts." Artificial Intelligence (21): pp. 61-98. I couldn't find that paper available for download anywhere, and being in Russia I found it quite tricky to get a paper version. Maybe you Americans will have better luck with your local library? And to the best of my knowledge no one ever succeeded in (or even seriously tried) confirming Lenat's EURISKO results.
Today in 2009 this state of affairs looks laughable. A 30-year-old pivotal breakthrough in a large and important field... that never even got reproduced. What if it was a gigantic case of Clever Hans? How do you know? You're supposed to be a scientist, little one.
So my proposal to the LessWrong community: let's reimplement EURISKO!
We have some competent programmers here, don't we? We have open source tools and languages that weren't around in 1980. We can build an open source implementation available for all to play. In my book this counts as solid progress in the AI field.
Hell, I'd do it on my own if I had the goddamn paper.
Update: RichardKennaway has put Lenat's detailed papers up online, see the comments.
Starting to seriously think about FAI and studying more rigorous system modeling techniques/theories changed my mind. There seems to be very little overlap between wild intuitions of ad-hoc AGI and technical challenges of careful inference/simulation or philosophical issues with formalizing decision theories for intelligence on overdrive.
Some of the intuitions from thinking about ad-hoc seem to carry over, but it's just that: intuitions, and understanding of approaches to more careful modeling, even if they are applicable only on "toy" applications, gives deeper insight than knowledge of a dozen "real projects". Intuitions gained from ad-hoc do apply, but only as naive clumsy caricatures.