Explaining is a difficult art. You can explain something so that your reader understands the words; [I try to] explain something so that the reader feels it in the marrow of his bones.
Richard Dawkins
My private school taught biology from the infamous creationist textbook Biology for Christian Schools, so my early understanding of evolution was a bit... confused. Lacking the curiosity to, say, check Altavista for a biologist’s explanation (faith is a virtue, don’t ya know), I remained confused about evolution for years.
Eventually I stumbled across an eloquent explanation of the fact that natural selection follows necessarily from heritability, variation, and selection.
Click. I got it.
Explaining is hard. Explainers need to pierce shields of misinformation (creationism), bridge vast inferential distances (probability theory), and cause readers to feel the truth of foreign concepts (quantum entanglement) in their bones. That isn’t easy. Those who do it well are rare and valuable.
Textbook writers are often skilled at explaining complex fields. That’s why I called on my fellow Less Wrongers to name their favorite textbooks (if they had read at least two other textbooks on those subjects). The Best Textbooks on Every Subject now gives 22 textbook recommendations, for fields as diverse as scientific self-help and representation theory.
Now I want to jump down a few levels in granularity. Let’s pool our knowledge to find great explanations for each important idea (in math, science, philosophy, etc.), whether or not there is equal value in the rest of the book or article in which each explanation is found.
Great explanations, in my meaning, have four traits:
-
A great explanation does more than report facts; it uses analogy and rhetoric and other tools to make readers feel the target idea in their bones.
-
A great explanation is not a single analogy nor a giant book. It is, roughly, between 2 and 100 pages in length.
-
A great explanation is comprehensible at best to a young teenager, or at least to a 75th percentile college graduate. (There may be no way to seriously explain string theory to an average 13-year-old.)
-
A great explanation is exciting to read.
By sharing great explanations we can more often experience that magical click.
List of Great Explanations
I’ve barely begun to assemble the list below. Please comment with your own additions!
(The list below is exclusive to written explanations, but feel free to share your favorite explanations from other media. My favorite explanation of BASIC programming is a piece of software from Interplay called Learn to Program BASIC, and of course many people love Khan Academy’s videos and The Teaching Company’s audio courses.)
Epistemology
-
Aumann’s agreement theorem: Landsburg, The Big Questions, chapter 8.
-
Occam’s razor: Yudkowsky, Occam’s razor.
Math and Logic
- Bayes’ Theorem: Yudkowsky, An Intuitive Explanation of Bayes’ Theorem.
Physics
-
Special relativity: Wolfson, Simply Einstein, chapters 2–12.
-
General relativity: Hawking, The Universe in a Nutshell, chapters 1–2.
-
Infinite, flat universe: Greene, The Hidden Reality, chapters 1–3.
-
Timeless reality / block universe: Greene, The Fabric of Reality, chapter 5.
-
Inflationary cosmology: Greene, The Hidden Reality, chapter 3.
-
Rainbows: Dawkins, The Magic of Reality, chapter 7.
Biology
- Tool use in animals: Zimmer, 50 Years of Animal Technology.
Psychology
-
Anchoring: Kahneman, Thinking, Fast and Slow, chapter 11.
-
Availability heuristic: Kahneman, Thinking, Fast and Slow, chapters 12–13.
-
Prospect theory: Kahneman, Thinking, Fast and Slow, chapters 25–26.
-
Modularity of mind: Kurzban, Why Everyone (Else) is a Hypocrite, chapters 1–4.
Economics
- The Pareto Principle: BetterExplained, Understanding the Pareto Principle.
I will never get a ping time to American servers from my home here in Melbourne of less than the distance times two divided by c.
If I drop a really heavy rock and a somewhat lighter rock from a moderate height there will be only a slight difference in how long they take to fall to the ground.
If I find some stuff that is really, really heavy and leave it in my pocket I will probably die of cancer.
Cars traveling towards me will sound slightly higher in pitch than after they go past me.
If I buy bullets that are designed to travel slower than sound they will probably make less noise than the bullets that go faster than the speed of sound.
If you give me some charts that show how much light of various wavelengths there is coming from two different stars and it so happens that they look really, really similar except that one is kind of 'stretched out' over the 'wavelength' axis I can tell you that the stretched out one is farther away from us.
And, the critical one:
You might believe that my lack of status as a mathematical physicist doesn't give me the right to make claims about Quantum Mechanics implications but the universe doesn't care. I can apply basic principles of rational thinking to filter large swathes of evidence from those who popularize physics and, particularly, the verbal, non-mathematical claims of physicists in order to work out whether or not a specific claim is likely to be correct.
Fair enough. There are indeed many ways in which the folk physics intuition can be improved by internalizing a rule that's simple enough to explain without math. I admit that my question was too aggressive and snarky.
However, I don't think any such simple insights will move you any close to understanding either QM or relativity (let alone more advanced topics such as cosmology or the controversies over QM interpretations), which was the topic of the original dispute. I must also point out that your rules are either from classical physics (and thus reasona... (read more)