The social justice movement espouses the notion that people who are privileged are often unfairly judgmental of those who were less privileged. Until recently, what they said didn't resonate with me. I knew that I had major advantages out of virtue of having been born a white, middle class male. But I recently realized that there were other privileges that I hadn't acknowledged as having benefited enormously from. In particular, I had the unusual experience of growing up with a very intellectually curious father, which gave me a huge head start in intellectual development.
I used to get annoyed when LWers misread my posts in ways that they wouldn't have if they had been reading more carefully. I conceptualized such commenters as being undisciplined, and being unwilling to do the work necessary to maintain high epistemic standards. I now see that my reading was in many cases uncharitable, analogous to many of my teachers having misread my learning disability as reflecting laziness. Many of my readers have probably never had the opportunity to learn how to read really carefully.
How did I myself learn? I don't remember in detail, but the one factor that seems most significant is my study of the mathematical subject of real analysis. A number of strongest thinkers who I know characterized the experience as a turning point in their development as well. It's the subject where one goes through rigorous proofs of the theorems of calculus.
Consider the extreme value theorem:
If a real-valued function f is continuous in the closed and bounded interval [a,b], then f must attain a maximum and a minimum, each at least once.
The theorem may seem obvious, but almost no undergraduate math majors would be able to come up with a logically impeccable proof from scratch. This ties in with why I almost never try to present rigorous arguments. If it's not clear to you that it might be very difficult to construct a rigorous proof of the extreme value theorem, you'd probably benefit intellectually from more exposure to mathematical proof. The experience of seeing how difficult it can be to offer rigorous proofs of even relatively simple statements trains one to read very carefully, and not make any unwarranted assumptions.
If you've studied calculus, haven't yet had the experience of proving theorems from first principles beyond high school geometry, and would are interested, I would recommend:
- Abbott's Understanding Analysis
- Rosenlicht's Introduction to Analysis (as a less expensive second choice)
- Gelbaum and Olmsted's Counterexamples in Analysis
The last of these books is great for developing a sense for how superficially plausible statements are often false.
What I'm saying is, that's not a good reason. Even the math with simple foundations has surprising results with complicated proofs that require precise understanding. It's hard enough as it is, and I am claiming that analysis is too much of a filter. It would be better to start with the most conceptually minimal mathematics.
...implying that it is actually pretty confusing. There are good reasons for wanting to learn analysis because it is applied so widely. But from the specific perspective of trying to learn lessons about math and rigorous argument in general, it seems like you want a subject that is legitimate math but otherwise as simple as possible. To some extent, trying to do real analysis as a first real math class is like trying to teach physics class in a foreign language. On the one hand, you just want to learn the physics, but at the same time you always have to translate into your native tongue, worrying that you made a subtle mistake in translation. If you want to learn how to prove stuff in general, you don't also want the objects that you're proving stuff about to be overcomplicated to the point that it's a whole chore just to understand what you're talking about. That is an important but distinct skill from understanding and inventing proofs.
Oh, sure, in expressing agreement with Epictetus I was just saying that I don't think that you get the full benefits that I was describing from basic discrete math. I agree that some students will find discrete math a better introduction to mathematical proof.