It occurred to me one day that the standard visualization of the Prisoner's Dilemma is fake.
The core of the Prisoner's Dilemma is this symmetric payoff matrix:
1: C | 1: D | |
2: C | (3, 3) | (5, 0) |
2: D | (0, 5) | (2, 2) |
Player 1, and Player 2, can each choose C or D. 1 and 2's utility for the final outcome is given by the first and second number in the pair. For reasons that will become apparent, "C" stands for "cooperate" and D stands for "defect".
Observe that a player in this game (regarding themselves as the first player) has this preference ordering over outcomes: (D, C) > (C, C) > (D, D) > (C, D).
D, it would seem, dominates C: If the other player chooses C, you prefer (D, C) to (C, C); and if the other player chooses D, you prefer (D, D) to (C, D). So you wisely choose D, and as the payoff table is symmetric, the other player likewise chooses D.
If only you'd both been less wise! You both prefer (C, C) to (D, D). That is, you both prefer mutual cooperation to mutual defection.
The Prisoner's Dilemma is one of the great foundational issues in decision theory, and enormous volumes of material have been written about it. Which makes it an audacious assertion of mine, that the usual way of visualizing the Prisoner's Dilemma has a severe flaw, at least if you happen to be human.
The classic visualization of the Prisoner's Dilemma is as follows: you are a criminal, and you and your confederate in crime have both been captured by the authorities.
Independently, without communicating, and without being able to change your mind afterward, you have to decide whether to give testimony against your confederate (D) or remain silent (C).
Both of you, right now, are facing one-year prison sentences; testifying (D) takes one year off your prison sentence, and adds two years to your confederate's sentence.
Or maybe you and some stranger are, only once, and without knowing the other player's history, or finding out who the player was afterward, deciding whether to play C or D, for a payoff in dollars matching the standard chart.
And, oh yes - in the classic visualization you're supposed to pretend that you're entirely selfish, that you don't care about your confederate criminal, or the player in the other room.
It's this last specification that makes the classic visualization, in my view, fake.
You can't avoid hindsight bias by instructing a jury to pretend not to know the real outcome of a set of events. And without a complicated effort backed up by considerable knowledge, a neurologically intact human being cannot pretend to be genuinely, truly selfish.
We're born with a sense of fairness, honor, empathy, sympathy, and even altruism - the result of our ancestors adapting to play the iterated Prisoner's Dilemma. We don't really, truly, absolutely and entirely prefer (D, C) to (C, C), though we may entirely prefer (C, C) to (D, D) and (D, D) to (C, D). The thought of our confederate spending three years in prison, does not entirely fail to move us.
In that locked cell where we play a simple game under the supervision of economic psychologists, we are not entirely and absolutely unsympathetic for the stranger who might cooperate. We aren't entirely happy to think what we might defect and the stranger cooperate, getting five dollars while the stranger gets nothing.
We fixate instinctively on the (C, C) outcome and search for ways to argue that it should be the mutual decision: "How can we ensure mutual cooperation?" is the instinctive thought. Not "How can I trick the other player into playing C while I play D for the maximum payoff?"
For someone with an impulse toward altruism, or honor, or fairness, the Prisoner's Dilemma doesn't really have the critical payoff matrix - whatever the financial payoff to individuals. (C, C) > (D, C), and the key question is whether the other player sees it the same way.
And no, you can't instruct people being initially introduced to game theory to pretend they're completely selfish - any more than you can instruct human beings being introduced to anthropomorphism to pretend they're expected paperclip maximizers.
To construct the True Prisoner's Dilemma, the situation has to be something like this:
Player 1: Human beings, Friendly AI, or other humane intelligence.
Player 2: UnFriendly AI, or an alien that only cares about sorting pebbles.
Let's suppose that four billion human beings - not the whole human species, but a significant part of it - are currently progressing through a fatal disease that can only be cured by substance S.
However, substance S can only be produced by working with a paperclip maximizer from another dimension - substance S can also be used to produce paperclips. The paperclip maximizer only cares about the number of paperclips in its own universe, not in ours, so we can't offer to produce or threaten to destroy paperclips here. We have never interacted with the paperclip maximizer before, and will never interact with it again.
Both humanity and the paperclip maximizer will get a single chance to seize some additional part of substance S for themselves, just before the dimensional nexus collapses; but the seizure process destroys some of substance S.
The payoff matrix is as follows:
1: C | 1: D | |
2: C | (2 billion human lives saved, 2 paperclips gained) | (+3 billion lives, +0 paperclips) |
2: D | (+0 lives, +3 paperclips) | (+1 billion lives, +1 paperclip) |
I've chosen this payoff matrix to produce a sense of indignation at the thought that the paperclip maximizer wants to trade off billions of human lives against a couple of paperclips. Clearly the paperclip maximizer should just let us have all of substance S; but a paperclip maximizer doesn't do what it should, it just maximizes paperclips.
In this case, we really do prefer the outcome (D, C) to the outcome (C, C), leaving aside the actions that produced it. We would vastly rather live in a universe where 3 billion humans were cured of their disease and no paperclips were produced, rather than sacrifice a billion human lives to produce 2 paperclips. It doesn't seem right to cooperate, in a case like this. It doesn't even seem fair - so great a sacrifice by us, for so little gain by the paperclip maximizer? And let us specify that the paperclip-agent experiences no pain or pleasure - it just outputs actions that steer its universe to contain more paperclips. The paperclip-agent will experience no pleasure at gaining paperclips, no hurt from losing paperclips, and no painful sense of betrayal if we betray it.
What do you do then? Do you cooperate when you really, definitely, truly and absolutely do want the highest reward you can get, and you don't care a tiny bit by comparison about what happens to the other player? When it seems right to defect even if the other player cooperates?
That's what the payoff matrix for the true Prisoner's Dilemma looks like - a situation where (D, C) seems righter than (C, C).
But all the rest of the logic - everything about what happens if both agents think that way, and both agents defect - is the same. For the paperclip maximizer cares as little about human deaths, or human pain, or a human sense of betrayal, as we care about paperclips. Yet we both prefer (C, C) to (D, D).
So if you've ever prided yourself on cooperating in the Prisoner's Dilemma... or questioned the verdict of classical game theory that the "rational" choice is to defect... then what do you say to the True Prisoner's Dilemma above?
[19:05]
Similarly, if I were to figure out that defecting is correct, that's what I can expect my opponent to do. This is similar to my ability to predict what your answer to adding a given pair of numbers would be: I can merely add the numbers myself, and, given our mutual competence at addition, solve the problem. The universe is predictable enough that we routinely, and fairly accurately, make such predictions about one another. From this viewpoint, I can reason that, if I were to cooperate or not, then my opponent would make the corresponding choice- if indeed we are both correctly solving the same problem, my opponent maximizing his expected payoff just as I maximize mine. I therefore act for the sake of what my opponent's action would then be, even though I cannot causally influence my opponent to take one action or the other, since there is no communication between us. Accordingly, I cooperate, and so does my opponent, using similar reasoning, and we both do fairly well.
[20:05]
One problem with the Prisoner's Dilemma is that the idealized degree of symmetry that's postulated between the two players may seldom occur in real life. But there are some important generalizations that may apply much more broadly. In particular, in many situations, the beneficiary of your cooperation may not be the same as the person whose cooperation benefits you. Instead, your decision whether to cooperate with one person may be symmetric to a different person's decision to cooperate with you. Again, even in the absence of any causal influence upon your potential benefactors, even if they will never learn of your cooperation with others, and even, moreover, if you already know of their cooperation with you before you make your own choice. That is analogous to the transparent version of Newcomb's Problem: there too, you act for the same of something that you already know is already obtained.
[21:04]
Anyways, as many authors have noted with regards to the Prisoner's Dilemma, this is beginning to sound a little like the Golden Rule or the Categorical Imperative: act towards others as you would like others to act towards you, in similar situations. The analysis in terms of counterfactual reasoning provides a rationale, under some circumstances, for taking an action that causes net harm to your own interests and net benefit to others' interests although the choice is still ultimately grounded in your own goals because of what would be the case because of others' isomorphic behavior if you yourself were to cooperate or not. Having a deriveable rationale for ethical or moral behaviour would be desirable for all sorts of reasons, not least of which is to help us make the momentous decisions as to how or even whether to engineer the Singularity.
There's about 2 more minutes of his presentation before he finished, but it looks like he just made some comparisons with TDT, so I'm too lazy to copy it over.