Lo! A cartoon proof of Löb's Theorem!
Löb's Theorem shows that a mathematical system cannot assert its own soundness without becoming inconsistent. Marcello and I wanted to be able to see the truth of Löb's Theorem at a glance, so we doodled it out in the form of a cartoon. (An inability to trust assertions made by a proof system isomorphic to yourself, may be an issue for self-modifying AIs.)
It was while learning mathematical logic that I first learned to rigorously distinguish between X, the truth of X, the quotation of X, a proof of X, and a proof that X's quotation was provable.
The cartoon guide follows as an embedded Scribd document after the jump, or you can download as a PDF file. Afterward I offer a medium-hard puzzle to test your skill at drawing logical distinctions.
Cartoon Guide to Löb's ... by on Scribd
Cartoon Guide to Löb's Theorem - Upload a Document to Scribd
And now for your medium-hard puzzle:
The Deduction Theorem (look it up) states that whenever assuming a hypothesis H enables us to prove a formula F in classical logic, then (H->F) is a theorem in classical logic.
Let ◻Z stand for the proposition "Z is provable". Löb's Theorem shows that, whenever we have ((◻C)->C), we can prove C.
Applying the Deduction Theorem to Löb's Theorem gives us, for all C:
((◻C)->C)->C
However, those familiar with the logic of material implication will realize that:
(X->Y)->Y
implies
(not X)->Y
Applied to the above, this yields (not ◻C)->C.
That is, all statements which lack proofs are true.
I cannot prove that 2 = 1.
Therefore 2 = 1.
Can you exactly pinpoint the flaw?
Yrg'f frr, V xabj sbe n snpg gung ¬(CN ⊢ (◻P → P) → P), gung vf, gung guvf fhccbfrq "nccyvpngvba" bs gur Qrqhpgvba Gurberz qb Yöo'f Gurberz vf abg n gurberz bs CN.
Yöo'f Gurberz vgfrys vf whfg gung -
Buuuu tbg vg.
Yöo'f Gurberz fnlf gung vs CN ⊢ ◻P → P, gura CN ⊢ P; be, fvzcyl, gung CN ⊢ ◻(◻P → P) → ◻P. Gur Qrqhpgvba Gurberz fnlf gung sbe "ernfbanoyr" (va n pregnva frafr) qrqhpgvir flfgrzf va svefg-beqre ybtvp naq nal frg bs nkvbzf Δ, vs vg'f gur pnfr gung, sbe fbzr N naq O, Δ ∪ {N} ⊢ O, gura Δ ⊢ N → O. Ubjrire, vg vf abg gur pnfr gung CN ∪ {◻P → P} ⊢ P, fvapr CN ∪ {◻P → P, ¬P} vf cresrpgyl pbafvfgrag (vss CN vf nyfb pbafvfgrag) naq vzcyvrf ¬◻P.
Be, va bgure jbeqf, nqqvat gur nkvbz ◻P → P gb CN sbe nal P bayl znxrf P n gurberz bs CN vs ◻P vf nyernql gurberz bs CN; ubjrire, ernfbavat "bhgfvqr" bs CN, jr xabj nyernql gung vs CN ⊢ ◻P gura CN ⊢ P (juvpu pna nyfb or sbeznyvfrq nf CN ⊢ ◻◻P → ◻P, juvpu vf n gurberz bs CN), fb nqqvat ◻P → P gb CN qbrf abg va snpg znxr CN "fgebatre" guna vg jnf orsber va nal zrnavatshy frafr, naq whfg znxrf CN gehfg vgf cebbs bs P, vs vg rire svaqf nal.
Gur pbeerpg nccyvpngvba bs gur Qrqhpgvba Gurberz gb Yöo'f Gurberz fnlf gung CN ∪ {◻(◻P → P)} ⊢ ◻P, juvpu jr nyernql xabj gb or gehr (orpnhfr... gung'f Yöo'f Gurberz), ohg fvapr ◻P → P vf abg va trareny n gurberz bs CN, guvf qbrf abg thnenagrr gung P jvyy or gehr. Naq phevbhfyl, guvf vzcyvrf gung nqqvat rvgure ◻(◻P → P) sbe nyy P be ◻P → P sbe nyy P gb CN qbrfa'g znxr CN nal fgebatre - qbvat gur sbezre npghnyyl eraqref ◻ rssrpgviryl zrnavatyrff, fvapr gura ◻P jvyy or gehr sbe nyy P, naq vg jvyy ab ybatre ercerfrag svaqvat n Töqry Ahzore bs n cebbs bs P, fb bar pbhyq fnl gung vg znxrf CN "jrnxre" va fbzr ybbfr frafr -, ohg nqqvat obgu sbe nyy P znxrf vg vapbafvfgrag.