Suppose I have a deck of four cards: The ace of spades, the ace of hearts, and two others (say, 2C and 2D).
You draw two cards at random.
Scenario 1: I ask you "Do you have the ace of spades?" You say "Yes." Then the probability that you are holding both aces is 1/3: There are three equiprobable arrangements of cards you could be holding that contain AS, and one of these is AS+AH.
Scenario 2: I ask you "Do you have an ace?" You respond "Yes." The probability you hold both aces is 1/5: There are five arrangements of cards you could be holding (all except 2C+2D) and only one of those arrangements is AS+AH.
Now suppose I ask you "Do you have an ace?"
You say "Yes."
I then say to you: "Choose one of the aces you're holding at random (so if you have only one, pick that one). Is it the ace of spades?"
You reply "Yes."
What is the probability that you hold two aces?
Argument 1: I now know that you are holding at least one ace and that one of the aces you hold is the ace of spades, which is just the same state of knowledge that I obtained in Scenario 1. Therefore the answer must be 1/3.
Argument 2: In Scenario 2, I know that I can hypothetically ask you to choose an ace you hold, and you must hypothetically answer that you chose either the ace of spades or the ace of hearts. My posterior probability that you hold two aces should be the same either way. The expectation of my future probability must equal my current probability: If I expect to change my mind later, I should just give in and change my mind now. Therefore the answer must be 1/5.
Naturally I know which argument is correct. Do you?
Further: write out your 12 possible trial pulls. Raw odds of ace-ace =2/12. Once an ace is pulled, do two things: cross out the two null-null pulls. The odds of ace-ace appear to be 2/10, but... We didn't draw out Schrodinger's ace; it is either ah or as. pick one (it doesnt matter which, they are symmetrical in distribution) and cross out the combinations that do not have this ace. As the waveform collapses the true odds of ace-ace appear- 2/6. Do you see that? We didnt draw an equally hearty or spadey ace, it had to be one of them or the other, which made combinations without it no longer a factor in our investigation.
Yes you can initially reduce the twelve trials to the six unique combinations, but ONLY because each of the six appears the same number of times as each of the other six (they are equally probable). In a set which favors some combinations, reducing the probability set to the possibility set will lose any meaningfulness.