Did computer programming make you a clearer, more precise thinker? How about mathematics? If so, what kind? Set theory? Probability theory?
Microeconomics? Poker? English? Civil Engineering? Underwater Basket Weaving? (For adding... depth.)
Anything I missed?
Context: I have a palette of courses to dab onto my university schedule, and I don't know which ones to chose. This much is for certain: I want to come out of university as a problem solving beast. If there are fields of inquiry whose methods easily transfer to other fields, it is those fields that I want to learn in, at least initially.
Rip apart, Less Wrong!
What signature do we need for it? Because in the first-order theory of real numbers without sets you cannot express functions or sequences.
For example, full theory of everything expressible about real numbers using "+, *, =, 0, 1, >" can be reolved algorithmically.
I'm not sure, presumably to "+*=01>" one adds a bunch of special functions. The "o-minimal approach" to differential geometry requires no sequences. Functions are encodable as definable graphs, so are vector fields.
As you note, for completeness reasons an actual o-minimal theory is not as strong as set theory; one has to smuggle in e.g. natural numbers somehow, maybe with sin(x). I could have made a less tendentious point with Godel numbering.
Again, this is meant as a kind of joke, not as a natural way of looking at sets. The point is that I don't regard von Neumann's {{},{{}},{{},{{}}}} as a natural way of looking at the number three, either.