If it's worth saying, but not worth its own post (even in Discussion), then it goes here.
Notes for future OT posters:
1. Please add the 'open_thread' tag.
2. Check if there is an active Open Thread before posting a new one. (Immediately before; refresh the list-of-threads page before posting.)
3. Open Threads should be posted in Discussion, and not Main.
4. Open Threads should start on Monday, and end on Sunday.
Let's assume that every test has the same probability of returning the correct result, regardless of what it is (e.g., if + is correct, then Pr[A returns +] = 12/20, and if - is correct, then Pr[A returns +] = 8/20).
The key statistic for each test is the ratio Pr[X is positive|disease] : Pr[X is positive|healthy]. This ratio is 3:2 for test A, 4:1 for test B, and 5:3 for test C. If we assume independence, we can multiply these together, getting a ratio of 10:1.
If your prior is Pr[disease]=1/20, then Pr[disease] : Pr[healthy] = 1:19, so your posterior odds are 10:19. This means that Pr[disease|+++] = 10/29, just over 1/3.
You may have obtained 1/2 by a double confusion between odds and probabilities. If your prior had been Pr[disease]=1/21, then we'd have prior odds of 1:20 and posterior odds of 1:2 (which is a probability of 1/3, not of 1/2).
Kindly, indeed.
Thank you. I believe I've got it down now.
Prior:1/101
Test: Correct positive 95%
False positive 20%
1 of the 101 has the disease, with 95% probability of receiving a positive reading, denoting 1 x .95 = .95
And 100 don't have the disease, each with a 20% probability of a positive reading, denoting 100 x .2=20
.95 + 20 = 20.95
.95 / 20.95 = .045, denoting a 4.5% chance that someone receiving a positive reading has the disease.
Thank you again :)